Skip to main content
Log in

Design methodology for metal-clad polarizer in SOI waveguides

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper we give a specific design methodology for the design of a metal-clad SOI waveguide TE-pass polarizer based on phase matching between the guided TM mode of the dielectric waveguide and surface plasmon TM mode supported by a metal-dielectric interface. The design criterion explicitly shows the necessity of a high index \({\text{Si}}_{3} {\text{N}}_{4}\) layer between the silica cladding and metal. The methodology is used to design a SOI waveguide polarizer in ridge configuration. The finite element method is used to characterize the ridge waveguides and propagations. The proposed polarizer has a very short device length of 5.5 μm with extinction ratio better than 30 dB and negligible loss for the TE polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alam, M.Z., Aitchison, J.S., Mojahedi, M.: Compact and silicon-on-insulator-compatible hybrid plasmonic TE-pass polarizer. Opt. Lett. 37(1), 55–57 (2012). doi:10.1364/OL.37.000055

    Article  ADS  Google Scholar 

  • Anand, J., Anand, J.K., Sharma, E.K.: Coupled mode analysis for simplified gain calculations in erbium-doped coaxial fibers. J. Opt. Soc. Am. B 30(6), 1496–1502 (2013). doi:10.1364/JOSAB.30.001496

    Article  ADS  Google Scholar 

  • Avrutsky, I.: Integrated optical polarizer for silicon-on-insulator waveguides using evanescent wave coupling to gap plasmon polaritons. IEEE J. Sel. Top. Quantum Electron. 14(6), 1509–1514 (2008). doi:10.1109/JSTQE.2008.926284

    Article  Google Scholar 

  • Batchman, T.E., Rashleigh, S.C.: Mode-selective properties of a metal-clad-dielectric-slab waveguide for integrated optics. IEEE J. Quantum Electron. 8(11), 848–850 (1972). doi:10.1109/JQE.1972.1076873

    Article  ADS  Google Scholar 

  • Carson, R.F., Batchman, T.E.: Polarization effects in silicon-clad optical waveguides. Appl. Opt. 23(17), 2985–2987 (1984). doi:10.1364/AO.23.002985

    Article  ADS  Google Scholar 

  • Chen, C.H., Wang, L.: Maximization of extinction ratios of thin-metal-clad optical waveguide polarizers with proper dielectric-cover-layer thickness. Jpn. J. Appl. Phys. 39(7A), 4130–4137 (2000). doi:10.1143/JJAP.39.4130

    Article  ADS  Google Scholar 

  • Dai, D., Wang, Z., Julian, N., Bowers, J.E.: Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides. Opt. Express 18(26), 27404–27415 (2010). doi:10.1364/OE.18.027404

    Article  ADS  Google Scholar 

  • Gallagher, D.F.G., Felici, T.P.: Eigenmode expansion methods for simulation of optical propagation in photonics—pros and cons. Proc. SPIE 4987, 69–82 (2003)

    Article  ADS  Google Scholar 

  • Garmire, E.M., Stoll, H.: Propagation losses in metal-film-substrate optical waveguides. IEEE J. Quantum Electron. 8(10), 763–766 (1972). doi:10.1109/JQE.1972.1076858

    Article  ADS  Google Scholar 

  • Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6(12), 4370–4379 (1972)

    Article  ADS  Google Scholar 

  • Oh, M.C., Lee, S.S., Shin, S.Y., Hwang, W.Y., Kim, J.J.: Polymeric waveguide polarisation splitter based on poling-induced birefringence. Electron. Lett. 32(4), 324–326 (1996). doi:10.1049/el:19960244

    Article  Google Scholar 

  • Polky, J.N., Mitchell, G.L.: Metal-clad planar dielectric waveguide for integrated optics. J. Opt. Soc. Am. 64(3), 274–279 (1974). doi:10.1364/JOSA.64.000274

    Article  ADS  Google Scholar 

  • Reinhart, F.K., Shelton, R.A., Lee, B.W.: MOS rib waveguide polarizers. Appl. Phys. 36, 237–240 (1980)

    Google Scholar 

  • Rollke, K.H., Sohler, W.: Metal-clad waveguide as cutoff polarizer for integrated optics. IEEE J. Quantum Electron. QE-13(4), 141–145 (1977)

    Article  ADS  Google Scholar 

  • Saini, M., Gupta, V.L., Sharma, E.K.: High extinction ratio metal-clad GaAs/GaAlAs waveguide polarizer. IEEE J. Quantum Electron. QE-27(11), 75–77 (1995). doi:10.1002/mop.4650080207

    Google Scholar 

  • Sharma, V.K., Kumar, A., Kapoor, A.: High extinction ratio metal-insulator-semiconductor waveguide surface plasmon polariton polarizer. Opt. Commun. 284(7), 1815–1821 (2011). doi:10.1016/j.optcom.2010.11.079

    Article  ADS  Google Scholar 

  • Thyagarajan, K., Seshadri, S.D., Ghatak, A.K.: Waveguide polarizer based on resonant tunneling. J. Lightw. Technol. 9(3), 315–317 (1991)

    Article  ADS  Google Scholar 

  • Yamamoto, Y., Kamiya, T., Yanai, H.: Characteristics of optical guided modes in multilayer metal-clad planar guide with low-index dielectric buffer layer. IEEE J. Quantum Electron. QE-11(9), 729–736 (1975)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank University Grants Commission (India) and Research Grants University of Delhi for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivani Sital.

Additional information

This article is part of the Topical Collection on Optical Wave & Waveguide Theory and Numerical Modelling, OWTNM’15.

Guest edited by Arti Agrawal, B.M.A. Rahman, Tong Sun, Gregory Wurtz, Anibal Fernandez and James R. Taylor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sital, S., Sharma, E.K. Design methodology for metal-clad polarizer in SOI waveguides. Opt Quant Electron 48, 369 (2016). https://doi.org/10.1007/s11082-016-0636-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0636-5

Keywords

Navigation