Skip to main content
Log in

Atom–photon, two-mode entanglement and two-mode squeezing in the presence of cross-Kerr nonlinearity

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The interaction of two quantized fields and three-level quantum system in a \(\Lambda \)-type configuration is investigated in the presence of cross-Kerr nonlinearity. We consider three models of coupling for the atom–photon interaction. First, we study the dynamical behavior of the atom–photon entanglement and show that increasing the cross-Kerr nonlinearity results in different behaviors in three considered models. Moreover, it is demonstrated that the two quantized modes can be entangled, on the other hand, by applying a classical driving field to the lower levels. Increasing the classical driving field destroys the long time atom–photon entanglement. Our results show that an oscillatory two-mode squeezing can be generated in the absence of a driving classical field and the cross-Kerr nonlinearity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abazari, M., Mortezapour, A., Mahmoudi, M., Sahrai, M.: Phase-controlled atom–photon entanglement in a three-level V-type atomic system via spontaneously generated coherence. Entropy 13, 1541–1554 (2011)

  • Abdel-Aty, M., Abdalla, M.S., Sanders, B.C.: Tripartite entanglement dynamics for an atom interacting with nonlinear couplers. Phys. Lett. A 373, 315–319 (2009)

  • Abdel-Hafez, A.M.: Degenerate and nondegenerate two-mode normal squeezing in a two-level atom and two-mode system. Phys. Rev. A 45, 6610–6614 (1992)

  • Agarwal, G.S., Puri, R.R.: Collapse and revival phenomenon in the evolution of a resonant field in a Kerr-like medium. Phys. Rev. A 39, 2969–2977 (1989)

  • Araki, H., Lieb, E.: Entropy inequalities. Commun. Math. Phys. 18, 160–170 (1970)

  • Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

  • Bennett, C.H., Gi, B., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1898 (1993)

  • Blinov, B.B., Moehring, D.L., Duan, L.M., Monroe, C.: Observation of entanglement between a single trapped atom and a single photon. Nature 428, 153–157 (2004)

  • Bowen, W.P., et al.: Experimental investigation of continuous-variable quantum teleportation. Phys. Rev. A 67, 032302–032305 (2003)

  • Briegel, H.J., Dür, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)

  • Buck, B., Sukumar, C.V.: Exactly soluble model of atom–phonon coupling showing periodic decay and revival. Phys. Lett. A 81, 132–135 (1981)

  • Caves, C.M., Schumaker, B.L.: New formalism for two-photon quantum optics. I. Quadrature phases and squeezed states. Phys. Rev. A 31, 3068–3092 (1985)

  • Duan, L.M., Giedke, G., Cirac, J.I., Zoller, P.: Inseparability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2722–2725 (2000)

  • Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–664 (1991)

  • Feng, S., Pfister, O.: Stable nondegenerate optical parametric oscillation at degenerate frequencies in Na:KTP. Quantum Semiclass. Opt. 5, 262–267 (2003)

  • Furusawa, A., Sørensen, J.L., Braunstein, S.L., Fuchs, C.A., Fuchs, C.A., Kimble, H.J., Polzik, E.S.: Unconditional quantum teleportation. Science 282, 706–709 (1998)

  • Garrison, J.C., Chiao, R.: Quantum Optics. Oxford University Press, New York (2008)

    Book  Google Scholar 

  • Grangier, P., Roch, H.F., Roger, G.: Observation of backaction-evading measurement of an optical intensity in a three-level atomic nonlinear system. Phys. Rev. Lett. 66, 1418–1421 (1990)

  • Grosshans, F., Assche, G.V., Wenger, J., Brouri, R., Cerf, N.J., Grangier, Ph: Quantum key distribution using gaussian-modulated coherent states. Nature 421, 238–241 (2003)

  • Hao, X., Lü, X.Y., Liu, L., Yang, X.: Continuous-variable entanglement via an incoherent pump in a microwave-driven \(\Lambda \)-type single-atom laser. J. Phys. B: At. Mol. Opt. Phys. 42, 105502–105508 (2009)

  • Hillery, M., Zubairy, M.S.: Entanglement conditions for two-mode states. Phys. Rev. Lett. 96, 050503–050506 (2006)

  • Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

  • Ikram, M., Li, G.X., Zubairy, M.S.: Entanglement generation in a two-mode quantum beat laser. Phys. Rev. A 76, 042317–042322 (2007)

  • Jaynes, E.T., Cummings, F.W.: Comparison of quantum and semi-classical radiation theories with application to the beam maser. Proc. IEEE 51, 89–109 (1963)

  • Josse, V., Dantan, A., Bramati, A., Pinard, M., Giacobino, E.: Continuous variable entanglement using cold atoms. Phys. Rev. Lett. 92, 123601–123604 (2004a)

  • Josse, V., Dantan, A., Bramati, A., Giacobino, E.: Entanglement and squeezing in a two-mode system: theory and experiment. J. Phys. B: At. Mol. Opt. Phys. 6, S532–S543 (2004b)

  • Kiffner, M., Zubairy, M.S., Evers, J., Keitel, C.H.: Two-mode single-atom laser as a source of entangled light. Phys. Rev. A 75, 033816–033823 (2007)

  • Liu, Z.D., Li, X., Lin, D.L., George, T.F.: Two-mode squeezing of cavity fields. Phys. Rev. A 44, 6144–6146 (1991)

  • Loudon, R., Knight, P.L.: Squeezed light. J. Mod. Opt. 34, 709–759 (1987)

  • Matsukevich, D., et al.: Entanglement of a photon and a collective atomic excitation. Phys. Rev. Lett. 95, 040405–040408 (2005)

  • Meystre, P., Zubairy, M.S.: Squeezed states in the Jaynes-Cummings model. Phys. Lett. A 89, 390–392 (1982)

  • Mortezapour, A., Abedi, M., Mahmoudi, M., Khajehpour, M.R.H.: The effect of a coupling field on the entanglement dynamics of a three-level atom. J. Phys. B: At. Mol. Opt. Phys. 44, 085501–085509 (2011)

  • Mortezapour, A., Kordi, Z., Mahmoudi, M.: Phase-controlled atom photon entanglement in a three-level \(\Lambda \)-type closed-loop atomic system Chin. Phys. B 22, 060310–060317 (2013)

  • Obada, A.-S.F., Eied, A.A.: Entanglement in a system of an \(\Xi \)-type three-level atom interacting with a non-correlated two-mode cavity field in the presence of nonlinearities. Opt. Commun. 282, 2184–2191 (2009)

  • Obada, A.-S.F., Eied, A.A., Abd Al-Kader, G.M.: Entanglement of a general formalism \(\Lambda \)-type three-level atom interacting with a non-correlated two-mode cavity field in the presence of nonlinearities. J. Phys. B: At. Mol. Opt. Phys. 41, 195503–195511 (2008)

  • Obada, A.-S.F., Eied, A.A., Abd Al-Kader, G.M.: Entanglement of a general formalism V-type three-level atom interacting with a single-mode field in the presence of nonlinearities. Int. J. Theor. Phys 48, 380–391 (2009)

    Article  MATH  Google Scholar 

  • Obada, A.-S.F., Hanoura, S.A., Eied, A.A.: Entropy of a general three-level atom interacting with a two mode. Laser Phys. 23, 025201–025211 (2013)

  • Ou, Z., Pereira, Y.S.F., Kimble, H.J., Peng, K.C.: Realization of the Einstein–Podolsky–Rosen paradox for continuous variables. Phys. Rev. Lett. 68, 3663–3666 (1992)

  • Phoenix, S.J.D., Knight, P.L.: Establishment of an entangled atom-field state in the Jaynes–Cummings model. Phys. Rev. A 44, 6023–6029 (1991)

  • Poizat, J.P., Collett, M.J., Walls, D.F.: Nondegenerate two-mode squeezing and quantum-nondemolition measurements using three-level atoms in a cavity. Phys. Rev. A 45, 5171–5179 (1992)

  • Rosenfeld, W., Berner, S., Volz, J., Weber, M., Weinfurter, H.: Remote preparation of an atomic quantum memory. Phys. Rev. Lett. 98, 050504–050507 (2007)

  • Schumaker, B.L., Caves, C.M.: New formalism for two-photon quantum optics. II. Mathematical foundation and compact notation. Phys. Rev. A 31, 3093–3111 (1985)

  • Sete, E.A.: Enhanced squeezing and entanglement in a non-degenerate three-level cascade laser with injected squeezed light. Opt. Commun. 280, 133–141 (2007)

  • Sete, E.A.: Bright entangled light from two-mode cascade laser. Opt. Commun. 281, 6124–6129 (2008)

  • Sete, E.A., Dorfman, K.E., Dowling, J.P.: Phase-controlled entanglement in a quantum-beat laser: application to quantum lithography. J. Phys. B: At. Mol. Opt. Phys. 44, 225504–225510 (2011)

  • Simon, R.: Peres–Horodecki separability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2726–2729 (2000)

  • Sukumar, C.V., Buck, B.: Multi-phonon generalisation of the Jaynes–Cummings model. Phys. Lett. A 83, 211–213 (1981)

  • Tesfa, S.: Entanglement amplification in a nondegenerate three-level cascade laser. Phys. Rev. A 74, 043816–043822 (2006)

  • Volz, J., et al.: Observation of entanglement of a single photon with a trapped atom. Phys. Rev. Lett. 96, 030404–030408 (2006)

  • Wasilewski, W., et al.: Generation of two-mode squeezed and entangled light in a single temporal and spatial mode. Opt. Express 17, 14444–14457 (2009)

  • Werner, M.J., Risken, H.: Quasiprobability distributions for the cavity-damped Jaynes-Cummings model with an additional Kerr medium. Phys. Rev. A 44, 4623–4631 (1991)

  • Wu, L.A., Kimble, H.J., Hall, J.L., Wu, H.: Generation of squeezed states by parametric down conversion. Phys. Rev. Lett. 57, 2520–2524 (1986)

  • Xiaoying, L., et al.: Quantum dense coding exploiting a bright Einstein–Podolsky–Rosen beam. Phys. Rev. Lett. 88, 047904–047908 (2002)

  • Xiong, H., Scully, M.O., Zubairy, M.S.: Correlated spontaneous emission laser as an entanglement amplifier. Phys. Rev. Lett. 94, 023601–023604 (2005)

  • Yang, X., Yan, D., Bao, Q., Zhang, Y., Cui, C.: The influence of spontaneously generated coherence on atom–photon entanglement in a \(\Lambda \)-type system with an incoherent pump. Cent. Eur. J. Phys. 12, 813–821 (2014)

  • Yoo, H.I., Eberly, J.H.: Dynamical theory of an atom with two or three levels interacting with quantized cavity fields. Phys. Rep. 118, 239–337 (1985)

  • Yuan, Z.-S., et al.: Experimental demonstration of a BDCZ quantum repeater node. Nature 454, 1098–1101 (2008)

  • Zhang, T.C.: Quantum teleportation of light beams. Phys. Rev. A 67, 033802–033817 (2003)

  • Zhou, L., Xiong, H., Zubairy, M.S.: Single atom as a macroscopic entanglement source. Phys. Rev. A 74, 022321–022325 (2006)

Download references

Acknowledgments

Ali Mortezapour would like to Dr. Bahman Ahmadi for his useful assistance in English writing of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Mortezapour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mortezapour, A., Mahmoudi, M. & Khajehpour, M.R.H. Atom–photon, two-mode entanglement and two-mode squeezing in the presence of cross-Kerr nonlinearity. Opt Quant Electron 47, 2311–2329 (2015). https://doi.org/10.1007/s11082-014-0109-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-014-0109-7

Keywords

Navigation