Skip to main content
Log in

Dependence of dark current on carrier lifetime for InGaAs/InP avalanche photodiodes

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Effects of carrier lifetime of all layers on the dark current have been studied for the separate-absorption-grading-charge-multiplication InGaAs/InP avalanche photodiodes (APDs). The results indicate that the remarkably increasing of the dark current at the punch-through voltage strongly depends on the carrier lifetime of InGaAs absorption layer. According to the simulation results, we can estimate the carrier lifetime of InGaAs absorption layer and InP multiplication layer to be about 100 ns and 20 ps for our fabricated device. And we can see that the dark current of APDs near the breakdown voltage is mainly dominated by the thermal generation–recombination current from the InGaAs absorption layer and trap-assisted-tunneling current from the InP multiplication layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acerbi, F., Anti, M., Tosi, A., Zappa, F.: Design criteria for InGaAs/InP single-photon avalanche diode. IEEE Photonics J. 5, 6800209 (2013)

    Article  Google Scholar 

  • Ahrenkiel, R.K.: “Properties of InP”, pp. 77. INSPEC, London. (1991)

  • Ahrenkiel, R.K., Ellingson, R., et al.: Recombination lifetime of \(\text{ In }_{0.53}\text{ Ga }_{0.47}\)As as a function of doping density. Appl. Phys. Lett. 72, 3470–3472 (1998)

    Article  ADS  Google Scholar 

  • Baker, C., Gregory, I.S., et al.: Highly resistive annealed low-temperature-grown InGaAs with sub-500fs carrier lifetimes. Appl. Phys. Lett. 85, 4965–4967 (2004)

    Article  ADS  Google Scholar 

  • D’Orsogna, D., Tobin, S., et al.: Numerical analysis of a very long-wavelength HgCdTe pixel array for infrared detection. J. Electron. Mater. 37, 1349–1355 (2008)

  • Ehrlich, J.E., Neilson, D.T., et al.: Carrier lifetimes in MBE and MOCVD InGaAs quantum wells. Semicond. Sci. Technol. 8, 307–309 (1993)

    Article  ADS  Google Scholar 

  • Forrest, S.R., Kim, O.K., Smith, R.G.: Optical response time of In0.53Ga0.47As/InP avalanche photodiodes. Appl. Phys. Lett. 41, 95–98 (1982)

    Article  ADS  Google Scholar 

  • Gallant, M., Zemel, A.: Long minority hole diffusion length and evidence for bulk radiative recombination limited lifetime in InP/InGaAs/InP double heterostructures. Appl. Phys. Lett. 52, 1686–1688 (1988)

    Article  ADS  Google Scholar 

  • Gupta, S., Whitaker, J.F., Mourou, G.A.: Ultrafast carrier dynamics in III–V semiconductors grown by molecular-beam epitaxy at very low substrate temperatures. IEEE J. Quantum Electron. 28, 2464–2472 (1992)

    Article  ADS  Google Scholar 

  • Hadfield, R.H.: Single-photon detectors for optical quantum information applications. Nat. Photonics 3, 696–705 (2009)

    Article  ADS  Google Scholar 

  • Hall, R.N.: Electron-hole recombination in germanium. Phys. Rev. 87, 387–387 (1952)

    Article  ADS  Google Scholar 

  • Henry, C.H., Logan, R.A., Merrit, F.R., Bethea, C.G.: Radiative and nonradiative lifetimes in n-type and p-type 1.6\(\mu \)m InGaAs. Electron. Lett. 20, 358–359 (1984)

    Article  Google Scholar 

  • Itzler, M.A., Jiang, X.D., et al.: High-performance single photon avalanche diodes for QKD networks. In: SECOQC Conference 08 (2008)

  • Itzler, M.A., Jiang, X.D., et al.: Advances in InGaAsP-based avalanche diode single photo detectors. J. Modern Opt. 58, 174–200 (2011)

    Article  ADS  Google Scholar 

  • Jiang, X., Itzler, M.A., Ben-Michael, R., Slomkowski, K.: InGaAs–InP avalanche photodiodes for single photon detection. IEEE Sel. Top. Quantum Electron. 13, 895–905 (2007)

    Article  Google Scholar 

  • Liu, A., Rosenwaks, Y.: Excess carriers lifetime in InP single crystals: radiative versus nonradiative recombination. J. Appl. Phys. 86, 430–437 (1999)

    Article  ADS  Google Scholar 

  • Pellegrini, S., Warburton, R.E., et al.: Design and performance of an InGaAs–InP single photon avalanche diode detector. IEEE J. Quantum Electron. 42, 397–403 (2006)

    Article  ADS  Google Scholar 

  • Rosenwaks, Y., Shapira, Y., Huppert, D.: Metal reactivity effects on the surface recombination velocity at InP interfaces. Appl. Phys. Lett. 57, 2552 (1990)

    Article  ADS  Google Scholar 

  • Shockley, W., Read, W.T.: Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835–842 (1952)

    Article  ADS  MATH  Google Scholar 

  • Wang, W.J., Lin, L., et al.: Numerical analysis of single photon avalanche photodiodes with Improved structure. In: 10th International Conference on Numerical Simulation of Optoelectronic Devices, pp. 19–20 (2010)

  • Zeng, Q.Y., Wang, W.J., et al.: Numerical analysis of multiplication layer on dark current for InGaAs/InP single photon avalanche diodes’. Opt. Quant. Electron. (2013). doi:10.1007/s11082-013-9809-7

  • Zhao, Y., Zhang, D.: InGaAs–InP avalanche photodiodes with dark current limited by generation–recombination. Opt. Express 19, 8546–8556 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by Strategic Pilot Program of Science and Technology of Chinese Academy of Sciences (XDB01010200), National Research Program of MOST (2011CB925600), National Natural Science Foundation of China (08K0510W15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. J. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Q.Y., Wang, W.J., Wen, J. et al. Dependence of dark current on carrier lifetime for InGaAs/InP avalanche photodiodes. Opt Quant Electron 47, 1671–1677 (2015). https://doi.org/10.1007/s11082-014-0024-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-014-0024-y

Keywords

Navigation