Skip to main content
Log in

Optimal designs of experiments for non-isothermal kinetic rates: analysis of different strategies

  • Research Article
  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

We consider the dependence on the measurement schedule of optimal experiments for kinetic parameters when the rates are temperature-dependent and follow the Arrhenius law. We compare three different approaches using the D-optimality criterion: (1) a locally optimal design based on a sequence of four batches where the process is observed at a single time; (2) two batches carried out at constant temperature where the process is observed at a pre-defined grid of times; and (3) a single batch where the temperature profile is optimal regarding the amount of information extracted and the process is observed at a pre-defined grid of times. An extension of the generalized equivalence theorem of optimal experimental design provides insight into the structure of the designs we find. The local D-optimality of the designs obtained is validated using the extended theorem for the latter two approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Asprey S, Macchietto S (2000) Statistical tools for optimal dynamic model building. Comput Chem Eng 24(2):1261–1267

    Article  Google Scholar 

  • Atkinson AC (2016) Optimum experiments with sets of treatment combinations. In: Müller CH, Kunert J, Atkinson AC (eds) mODA 11—advances in model-oriented design and analysis. Springer, Heidelberg, pp 19–26

    Google Scholar 

  • Bauer I, Bock HG, Körkel S, Schlöder JP (2000) Numerical methods for optimum experimental design in DAE systems. J Comput Appl Math 120(1):1–25

    Article  MathSciNet  MATH  Google Scholar 

  • Biegler LT (2010) Nonlinear programming: concepts, algorithms, and applications to chemical processes. Society for Industrial and Applied Mathematics, Philadelphia

    Book  MATH  Google Scholar 

  • Birge JR, Louveaux F (1997) Introduction to stochastic programming. Springer, New York

    MATH  Google Scholar 

  • Box GEP, Lucas H (1959) Design of experiments in non-linear situations. Biometrika 46(1–2):77–90

    Article  MathSciNet  MATH  Google Scholar 

  • Chen BH, Asprey SP (2003) On the design of optimally informative dynamic experiments for model discrimination in multiresponse nonlinear situations. Ind Eng Chem Res 42(7):1379–1390. https://doi.org/10.1021/ie0203025

    Article  Google Scholar 

  • Dongarra JJ, Moler CB, Bunch JR, Stewart GW (1979) LINPACK user’s guide. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Drud A (1985) CONOPT: a GRG code for large sparse dynamic nonlinear optimization problems. Math Program 31:153–191

    Article  MathSciNet  MATH  Google Scholar 

  • Fedorov VV (1971) The design of experiments in the multiresponse case. Theory Probab Appl 16:323–332

    Article  MATH  Google Scholar 

  • Fedorov VV (1972) Theory of optimal experiments. Academic Press, Cambridge

    Google Scholar 

  • Fedorov VV, Leonov SL (2014) Optimal design for nonlinear response models. Chapman and Hall/CRC Press, Boca Raton

    MATH  Google Scholar 

  • Galvanin F, Cao E, Al-Rifai N, Gavriilidis A, Dua V (2016) A joint model-based experimental design approach for the identification of kinetic models in continuous flow laboratory reactors. Comput Chem Eng 95:202–215

    Article  Google Scholar 

  • Kiefer J (1974) General equivalence theory for optimum design (approximate theory). Ann Stat 2:849–879

    Article  MathSciNet  MATH  Google Scholar 

  • Kiefer J, Wolfowitz J (1960) The equivalence of two extremum problem. Can J Math 12:363–366

    Article  MathSciNet  MATH  Google Scholar 

  • Pukelsheim F (1993) Optimal design of experiments. SIAM, Philadelphia

    MATH  Google Scholar 

  • Rosenthal RE (2015) GAMS—a user’s guide. Washington, DC, USA. https://www.gams.com/help/topic/gams.doc/userguides/GAMSUsersGuide.pdf

  • Shapiro A, Homem-de-Mello T (1998) A simulation-based approach to two-stage stochastic programming with recourse. Math Program 81(3):301–325

    Article  MathSciNet  MATH  Google Scholar 

  • Silvey SD (1980) Optimal design. Chapman & Hall, London

    Book  MATH  Google Scholar 

  • Ucińsky D, Bogacka B (2004) \(T\)-optimum designs for multiresponse dynamic heteroscedastic models. In: Di Bucchianico A, Läuter H, Wynn HP (eds) mODA 7—advances in model-oriented design and analysis. Physica, Heidelberg, pp 191–199

    Google Scholar 

  • Ugray Z, Lasdon L, Plummer J, Glover F, Kelly J, Martí R (2005) A multistart scatter search heuristic for smooth nlp and minlp problems. In: Sharda R, Voß S, Rego C, Alidaee B (eds) Metaheuristic optimization via memory and evolution. Springer, Berlin, pp 25–51

    Chapter  Google Scholar 

  • Vassiliadis VS, Sargent RWH, Pantelides CC (1994a) Solution of a class of multistage dynamic optimization problems. 1. Problems with path constraints. Ind Eng Chem Res 33(9):2111–2122

    Article  Google Scholar 

  • Vassiliadis VS, Sargent RWH, Pantelides CC (1994b) Solution of a class of multistage dynamic optimization problems. 2. Problems with path constraints. Ind Eng Chem Res 33(9):2123–2133

    Article  Google Scholar 

  • Whittle P (1973) Some general points in the theory of optimal experimental design. J R Stat Soc Ser B 35:123–130

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belmiro P. M. Duarte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duarte, B.P.M., Atkinson, A.C. Optimal designs of experiments for non-isothermal kinetic rates: analysis of different strategies. Optim Eng 20, 725–748 (2019). https://doi.org/10.1007/s11081-018-9415-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-018-9415-4

Keywords

Navigation