Skip to main content
Log in

A numerical approach for investigating multiple eigenpairs of a quasilinear elliptic system

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The aim of this study is to provide a rigorous description of a numerical approach based on the local min-orthogonal method for finding multiple eigenpairs of a quasilinear elliptic system. By a Rayleigh quotient formulation, the eigenvalue problem is transformed into a constrained variational problem. In this constrained problem setup, we define a novel local L-\(\perp \) selection mapping on a product space of two Banach spaces in order to develop a local characterization of the eigenfunctions. Based on this local characterization, we present a numerical algorithm for computing multiple eigenpairs of the quasilinear elliptic system. For practical implementation of the proposed algorithm, we discretized the eigenvalue problem using the finite element method. Then, a global sequence convergence result of the algorithm is established for the discretized problem. Finally, the algorithm and its associated theory are demonstrated by numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that supports the findings of this study are available within the article.

References

  1. Bensoussan, A., Frehse., J.: Regularity results for nonlinear elliptic systems and applications. Springer, Berlin (2002)

  2. Boccardo, L., De Figueiredo, D.G.: Some remarks on a system of quasilinear elliptic equations. NoDEA Nonlinear Diff. Equ. Appl. 9, 309–323 (2002)

  3. Bozorgnia, F., Mohammadi, S.A., Vejchodskỳ, T.: The first eigenvalue and eigenfunction of a nonlinear elliptic system. Appl. Numer. Math. 145, 159–174 (2019)

    Article  MathSciNet  Google Scholar 

  4. Chen, X., Zhou, J.: A local min-orthogonal method for multiple solutions of strongly coupled elliptic systems. Discret. Contin. Dyn. Syst. Supplement: 151–160 (2009)

  5. Chen, X., Zhou, J.: A local min-max-orthogonal method for finding multiple solutions to noncooperative elliptic systems. Math. Comp. 79(272), 2213–2236 (2010)

    Article  MathSciNet  Google Scholar 

  6. Chen, X., Zhou, J., Yao, X.: A numerical method for finding multiple co-existing solutions to nonlinear cooperative systems. Appl. Numer. Math. 58(11), 1614–1627 (2008)

    Article  MathSciNet  Google Scholar 

  7. Choi, Y.S., Huan, Z., Lui, R.: Global existence of solutions of a strongly coupled quasilinear parabolic system with applications to electrochemistry. J. Diff. Equ. 194(2), 406–432 (2003)

    Article  MathSciNet  Google Scholar 

  8. Ciarlet, P.G., Lions, J.L.: Handbook of numerical analysis, vol. II. finite element methods (Part I). Elsevier Science Publisher, Amsterdam (1991)

  9. Dancer, E.N., Du, Y.: Effects of certain degeneracies in the predator-prey model. SIAM J. Math. Anal. 34(2), 292–314 (2002)

    Article  MathSciNet  Google Scholar 

  10. Drabek, P., Stavrakakis, N.M., Zographopoulos, N.B.: Multiple non-semitrivial solutions for quasilinear elliptic systems. Diff. Integr. Equ. 16(12), 1519–1531 (2003)

    Google Scholar 

  11. Fleckinger, J., Manásevich, R.F., Stavrakakis, N.M., De Thélin, F.: Principal eigenvalues for some quasilinear elliptic equations on \(\mathbb{R}^N\). Adv. Diff. Equ. 2(6), 981–1003 (1997)

    Google Scholar 

  12. Fleckinger-Pelle, J., Gossez, J.P., Takáĉ, P., De Thélin, F.: Nonexistence of solutions and an anti-maximum principle for cooperative systems with the \(p\)-Laplacian. Math. Nachr. 194(1), 49–78 (1998)

    Article  MathSciNet  Google Scholar 

  13. Huang, Y.Q., Li, R., Liu, W.: Preconditioned descent algorithms for \(p\)-Laplacian. J. Sci. Comput. 32(2), 343–371 (2007)

    Article  MathSciNet  Google Scholar 

  14. Li, Y., Zhou, J.: A minimax method for finding multiple critical points and its applications to semilinear PDEs. SIAM J. Sci. Comput. 23(3), 840–865 (2001)

    Article  MathSciNet  Google Scholar 

  15. Lv, Y., Ou, Z.Q.: Existence of weak solutions for a class of \((p, q)\)-Laplacian systems. Bound. Value Probl. 2017(168), 1–16 (2017)

    MathSciNet  Google Scholar 

  16. Nehari, Z.: On a class of nonlinear second-order differential equations. Trans. Amer. Math. Soc. 95(1), 101–123 (1960)

    Article  MathSciNet  Google Scholar 

  17. Patra, S., Srinivas Kumar, V.V.K.: A local min-orthogonal based numerical method for computing multiple coexisting solutions to cooperative \(p\)-Laplacian systems. Appl. Numer. Math. 169, 221–242 (2021)

  18. Patra, S., Srinivas Kumar, V.V.K.: A minimax algorithm based on Newton’s method and an application for finding multiple solutions of \(p\)-area problems. Numer. Methods Partial Diff. Equ. 39(3), 2284–2306 (2023)

  19. Perera, K., Schechter, M.: Sandwich pairs for \(p\)-Laplacian systems. J. Math. Anal. Appl. 358(2), 485–490 (2009)

    Article  MathSciNet  Google Scholar 

  20. Perera, K., Agarwal, R.P., O’Regan, D.: Morse theoretic aspects of \(p\)-Laplacian type operators. No. 161. American Mathematical Soc. (2010)

  21. Wang, Z.Q., Zhou, J.: A local minimax-Newton method for finding multiple saddle points with symmetries. SIAM J. Numer. Anal. 42(4), 1745–1759 (2004)

    Article  MathSciNet  Google Scholar 

  22. Wang, Z.Q., Zhou, J.: An efficient and stable method for computing multiple saddle points with symmetries. SIAM J. Numer. Anal. 43(2), 891–907 (2005)

    Article  MathSciNet  Google Scholar 

  23. Yao, X.: Convergence analysis of a minimax method for finding multiple solutions of semilinear elliptic equation: Part I-On polyhedral domain. J. Sci. Comput. 62(3), 652–673 (2015)

    Article  MathSciNet  Google Scholar 

  24. Yao, X., Zhou, J.: A minimax method for finding multiple critical points in Banach spaces and its application to quasi-linear elliptic PDE. SIAM J. Sci. Comput. 26(5), 1796–1809 (2005)

    Article  MathSciNet  Google Scholar 

  25. Yao, X., Zhou, J.: Numerical methods for computing nonlinear eigenpairs: Part I. Isohomogeneous cases. SIAM J. Sci. Comput. 29(4), 1355–1374 (2007)

    Article  Google Scholar 

  26. Yao, X., Zhou, J.: Unified convergence results on a minimax algorithm for finding multiple critical points in Banach spaces. SIAM J. Numer. Anal. 45(3), 1330–1347 (2007)

    Article  MathSciNet  Google Scholar 

  27. Yao, X., Zhou, J.: Numerical methods for computing nonlinear eigenpairs: Part II. Non-Isohomogeneous cases. SIAM J. Sci. Comput. 30(2), 937–956 (2008)

    Article  Google Scholar 

  28. Zhou, J.: A local min-orthogonal method for finding multiple saddle points. J. Math. Anal. Appl. 291(1), 66–81 (2004)

    Article  MathSciNet  Google Scholar 

  29. Zographopoulos, N.B.: On the isolation of the principal eigenvalue for a \(p\)-Laplacian system. Science Direct Working Paper (S1574-0358), 04 (2004)

  30. Zographopoulos, N.B.: On the principal eigenvalue of degenerate quasilinear elliptic systems. Math. Nachr. 281(9), 1351–1365 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge Dr. Sudhakar Chaudhary for several helpful discussions and suggestions. The author would also like to thank the anonymous reviewers for many helpful suggestions and comments.

Author information

Authors and Affiliations

Authors

Contributions

The sole author is given attribution in this work for the initial idea, algorithm development, mathematical analysis, computational experiments, and drafting of the manuscript.

Corresponding author

Correspondence to Suchismita Patra.

Ethics declarations

Ethical approval and consent to participate

Not applicable

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patra, S. A numerical approach for investigating multiple eigenpairs of a quasilinear elliptic system. Numer Algor (2024). https://doi.org/10.1007/s11075-024-01822-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11075-024-01822-y

Keywords

Mathematics Subject Classification (2010)

Navigation