Skip to main content
Log in

A priori and a posteriori error estimation for singularly perturbed delay integro-differential equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This article deals with the numerical analysis of a class of singularly perturbed delay Volterra integro-differential equations exhibiting multiple boundary layers. The discretization of the considered problem is done using an implicit difference scheme for the differential term and a composite numerical integration rule for the integral term. The analysis of the discrete scheme consists of two parts. First, we establish an a priori error estimate that is used to prove robust convergence of the discrete scheme on Shishkin and Bakhvalov type meshes. Next, we establish the maximum norm a posteriori error estimate that involves difference derivatives of the approximate solution. The derived a posteriori error estimate gives the computable and guaranteed upper bound on the error. Numerical experiments confirm the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Bocharov, G.A., Rihan, F.A.: Numerical modelling in biosciences using delay differential equations. J. Comput. Appl. Math. 125(1–2), 183–199 (2000)

    Article  MathSciNet  Google Scholar 

  2. Brunner, H., deHouwen, P.: The numerical solution of Volterra equations. CWI monographs (1986)

  3. De Gaetano, A., Arino, O.: Mathematical modelling of the intravenous glucose tolerance test. J. Math. Biol. 40(2), 136–168 (2000)

    Article  MathSciNet  PubMed  Google Scholar 

  4. Jerri, A.: Introduction to integral equations with applications. John Wiley & Sons, New York (1999)

    Google Scholar 

  5. Marino, S., Beretta, E., Kirschner, D.E.: The role of delays in innate and adaptive immunity to intracellular bacterial infection. Math. Biosci. Eng. 4(2), 261 (2007)

    Article  MathSciNet  PubMed  Google Scholar 

  6. Wazwaz, A.-M.: First course in integral equations. A. World Scientific Publishing Company, Singapore (2015)

    Book  Google Scholar 

  7. Kadalbajoo, M.K., Gupta, V.: A brief survey on numerical methods for solving singularly perturbed problems. Appl. Math. Comput. 217(8), 3641–3716 (2010)

    MathSciNet  Google Scholar 

  8. Roos, H.-G., Stynes, M., Tobiska, L.: Robust numerical methods for singularly perturbed differential equations: convection-diffusion-reaction and flow problems. Springer, Berlin (2008)

    Google Scholar 

  9. Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Fitted numerical methods for singular perturbation problems: error estimates in the maximum norm for linear problems in one and two dimensions. World Scientific, Singapore (1996)

    Book  Google Scholar 

  10. O’Malley, R.E.: Singular perturbation methods for ordinary differential equations, vol. 89. Springer, New York (1991)

    Google Scholar 

  11. Kudu, M., Amirali, I., Amiraliyev, G.M.: A finite-difference method for a singularly perturbed delay integro-differential equation. J. Comput. Appl. Math. 308, 379–390 (2016)

    Article  MathSciNet  Google Scholar 

  12. Kopteva, N.: Maximum norm a posteriori error estimates for a one-dimensional convection-diffusion problem. SIAM J. Numer. Anal. 39(2), 423–441 (2001)

    Article  MathSciNet  Google Scholar 

  13. Kopteva, N., Stynes, M.: A robust adaptive method for a quasi-linear one-dimensional convection-diffusion problem. SIAM J. Numer. Anal. 39(4), 1446–1467 (2001)

    Article  MathSciNet  Google Scholar 

  14. Kumar, S., Kumar, S., Sumit: A posteriori error estimation for quasilinear singularly perturbed problems with integral boundary condition. Numer. Algorithms, 1–19 (2021)

  15. Kumar, S., Kumar, S., Sumit: High-order convergent methods for singularly perturbed quasilinear problems with integral boundary conditions. Math. Meth. Appl. Sci. (2020). https://doi.org/10.1002/mma.6854

  16. Amiraliyev, G.M., Şevgin, S.: Uniform difference method for singularly perturbed Volterra integro-differential equations. Appl. Math. Comput. 179(2), 731–741 (2006)

    MathSciNet  Google Scholar 

  17. Iragi, B.C., Munyakazi, J.B.: A uniformly convergent numerical method for a singularly perturbed Volterra integro-differential equation. Int. J. Comput. Math. 97(4), 759–771 (2020)

    Article  MathSciNet  Google Scholar 

  18. Iragi, B.C., Munyakazi, J.B.: New parameter-uniform discretisations of singularly perturbed Volterra integro-differential equations. Appl. Math. Inf. Sci. 12(3), 517–527 (2018)

    Article  MathSciNet  Google Scholar 

  19. Mbroh, N.A., Noutchie, S.C.O., Massoukou, R.Y.M.: A second order finite difference scheme for singularly perturbed Volterra integro-differential equation. Alex. Eng. J. 59(4), 2441–2447 (2020)

    Article  Google Scholar 

  20. Yapman, O., Amiraliyev, G.M.: A novel second-order fitted computational method for a singularly perturbed Volterra integro-differential equation. Int. J. Comput. Math. 97(6), 1293–1302 (2020)

    Article  MathSciNet  Google Scholar 

  21. Kumar, S., Sumit, Vigo-Aguiar, J.: Analysis of a nonlinear singularly perturbed Volterra integro-differential equation. J. Comput. Appl. Math. 113410 (2021)

  22. Zhongdi, C., Lifeng, X.: A parameter robust numerical method for a singularly perturbed Volterra equation in security technologies. Matrix 1, 20–22 (2006)

    Google Scholar 

  23. Şevgin, S.: Numerical solution of a singularly perturbed Volterra integro-differential equation. Adv. Differ. Equ. 2014(1), 1–15 (2014)

    Article  MathSciNet  Google Scholar 

  24. Amiraliyev, G.M., Erdogan, F.: A finite difference scheme for a class of singularly perturbed initial value problems for delay differential equations. Numer. Algorithms 52, 663–675 (2009)

    Article  MathSciNet  Google Scholar 

  25. Amiraliyeva, I.G., Amiraliyev, G.M.: Uniform difference method for parameterized singularly perturbed delay differential equations. Numer. Algorithms 52, 509–521 (2009)

    Article  MathSciNet  Google Scholar 

  26. Erdogan, F., Amiraliyev, G.M.: Fitted finite difference method for singularly perturbed delay differential equations. Numer. Algorithms 59, 131–145 (2012)

    Article  MathSciNet  Google Scholar 

  27. Kadalbajoo, M.K., Ramesh, V.P.: Numerical methods on Shishkin mesh for singularly perturbed delay differential equations with a grid adaptation strategy. Appl. Math. Comput. 188(2), 1816–1831 (2007)

    MathSciNet  Google Scholar 

  28. Sharma, K.K., Rai, P.: Numerical approximation for a class of singularly perturbed delay differential equations with boundary and interior layer(s). Numer. Algorithms 85, 305–328 (2020)

    Article  MathSciNet  Google Scholar 

  29. Kumar, S., Kumar, M.: A second order uniformly convergent numerical scheme for parameterized singularly perturbed delay differential problems. Numer. Algorithms 76(2), 349–360 (2017)

    Article  MathSciNet  Google Scholar 

  30. Kumar, S., Kumar, M.: High order parameter-uniform discretization for singularly perturbed parabolic partial differential equations with time delay. Comput. Math. Appl. 68(10), 1355–1367 (2014)

    Article  MathSciNet  Google Scholar 

  31. Singh, J., Kumar, S., Kumar, M.: A domain decomposition method for solving singularly perturbed parabolic reaction-diffusion problems with time delay. Numer. Methods Partial Differ. Equ. 34(5), 1849–1866 (2018)

    Article  MathSciNet  Google Scholar 

  32. Yapman, O., Amiraliyev, G.M.: Convergence analysis of the homogeneous second order difference method for a singularly perturbed Volterra delay-integro-differential equation. Chaos, Solitons Fractals 150, 111100 (2021)

    Article  MathSciNet  Google Scholar 

  33. deBoor, C.: Good approximation by splines with variable knots. In: Spline Functions and Approximation Theory, pp. 57–72. Springer, Birkhäuser, Basel (1973)

  34. Xu, X., Huang, W., Russell, R., Williams, J.: Convergence of de Boor’s algorithm for the generation of equidistributing meshes. IMA J. Numer. Anal. 31(2), 580–596 (2011)

    Article  MathSciNet  Google Scholar 

  35. Linss, T., Radojev, G., Zarin, H.: Approximation of singularly perturbed reaction-diffusion problems by quadratic C\(^1\)-splines. Numer. Algorithms 61, 35–55 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to express great appreciation to anonymous reviewers and editor for their valuable comments and suggestions, which have helped to improve the quality and presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Kumar, S. & Sumit A priori and a posteriori error estimation for singularly perturbed delay integro-differential equations. Numer Algor 95, 1561–1582 (2024). https://doi.org/10.1007/s11075-023-01620-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-023-01620-y

Keywords

Navigation