Skip to main content
Log in

A fast algorithm for time-fractional diffusion equation with space-time-dependent variable order

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We investigate a fast algorithm for the time-fractional diffusion equation with a space-time-dependent variable order, which models, e.g., the subdiffusion with varying memory effects. In addition to the traditional L1 discretization of the time-fractional derivative, we perform a further approximation for the L1 coefficients, analyze the structures of the resulting all-at-once system, and apply the divide and conquer method to obtain a fast numerical algorithm. Due to the spatial dependence of the variable order and the further approximation to the L1 coefficients, the temporal discretization coefficients are coupled with the inner product of the finite element method and lack the monotonicity, which are rarely encountered in previous works and thus motivate novel analysis methods and computational techniques. Compared with the standard time-stepping methods with L1 discretization, the proposed algorithm reduces the complexity of solving the all-at-once system from \(O(MN^2)\) to \(O(MN\ln ^3 N)\), where M stands for the spatial degree of freedom and N refers to the number of time steps. Numerical experiments are provided to substantiate the theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of supporting data

All data generated or analyzed during this study are included in this article.

References

  1. Deng, W.: Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal. 47, 204–226 (2009)

    MathSciNet  MATH  Google Scholar 

  2. K. Diethelm, The analysis of fractional differential equations. An application-oriented exposition using differential operators of Caputo type. Lecture Notes in Mathematics, 2004. Springer-Verlag, Berlin, 2010

  3. Gu, X., Sun, H., Zhao, Y., Zheng, X.: An implicit difference scheme for time-fractional diffusion equations with a time-invariant type variable order. Appl. Math. Lett. 120, 107270 (2021)

    MathSciNet  MATH  Google Scholar 

  4. Jin, B., Li, B., Zhou, Z.: Subdiffusion with a time-dependent coefficient: Analysis and numerical solution. Math. Comp. 88, 2157–2186 (2019)

    MathSciNet  MATH  Google Scholar 

  5. Li, D., Liao, H., Sun, W., Wang, J., Zhang, J.: Analysis of L1-Galerkin FEMs for time-fractional nonlinear parabolic problems, Commun. Comput. Phys. 24, 86–103 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Li, Y., Wang, H., Zheng, X.: A viscoelastic Timoshenko beam model: regularity and numerical approximation. J. Sci. Comput. to appear

  7. Meerschaert, M.M., Sikorskii, A.: Stochastic Models for Fractional Calculus. De Gruyter Studies in Mathematics (2011)

  8. Obembe, A., Hossain, M., Abu-Khamsin, S.: Variable-order derivative time fractional diffusion model for heterogeneous porous media. J. Petrol. Sci. Eng. 152, 391–405 (2017)

    Google Scholar 

  9. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded mesh for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Zayernouri, M., Karniadakis, G.: Discontinuous Spectral Element Methods for Time- and Space-Fractional Advection Equations. SIAM J. Sci. Comput. 36, B684–B707 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Zhao, X., Hu, X., Cai, W., Karniadakis, G.E.: Adaptive finite element method for fractional differential equations using hierarchical matrices. Comput. Meth. Appl. Mech. Engrg. 325, 56–76 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Garrappa, R., Giusti, A., Mainardi, F.: Variable-order fractional calculus: A change of perspective. Commun. Nonlinear Sci. Numer. Simul. 102, 105904 (2021)

    MathSciNet  MATH  Google Scholar 

  13. Feng, L., Turner, I., Perré, P., Burrage, K.: An investigation of nonlinear time-fractional anomalous diffusion models for simulating transport processes in heterogeneous binary media. Commun. Nonlinear Sci. Numer. Simul. 92, 105454 (2021)

    MathSciNet  MATH  Google Scholar 

  14. Schumer, R., Benson, D.A., Meerschaert, M.M., Baeumer, B.: Fractal mobile/immobile solute transport. Water Resources Res. 39, 1–12 (2003)

    Google Scholar 

  15. Zaky, M., Bockstal, K., Taha, T., Suragan, D., Hendy, A.: An L1 type difference/Galerkin spectral scheme for variable-order time-fractional nonlinear diffusion-reaction equations with fixed delay. J. Comput. Appl. Math. 420, 114832 (2023)

    MathSciNet  MATH  Google Scholar 

  16. Zheng, X., Wang, H.: A time-stepping finite element method for a time-fractional partial differential equation of hidden-memory space-time variable order. Elect. Trans. Numer. Anal. 55, 652–670 (2022)

    MathSciNet  MATH  Google Scholar 

  17. Zheng, X., Wang, H.: A time-fractional partial differential equation with a space-time dependent hidden-memory variable order: analysis and approximation. BIT Numer. Math. 61, 1453–1481 (2021)

    MATH  Google Scholar 

  18. Lorenzo, C., Hartley, T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29, 57–98 (2002)

    MathSciNet  MATH  Google Scholar 

  19. Sun, H., Chang, A., Zhang, Y., Chen, W.: A review on variable-order fractional differential equations: Mathematical foundations, physical models, numerical methods and applications, Fract. Calc. Appl. Anal. 22, 27–59 (2019)

    MathSciNet  MATH  Google Scholar 

  20. Zeng, F., Zhang, Z., Karniadakis, G.: A generalized spectral collocation method with tunable accuracy for variable-order fractional differential equations. SIAM J. Sci. Comput. 37, A2710–A2732 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Bai, Z., Lu, K., Pan, J.: Diagonal and Toeplitz splitting iteration methods for diagonal-plus-Toeplitz linear systems from spatial fractional diffusion equations. Numer. Linear Algerbra Appl. 24, e2093 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Diethelm, K.: An efficient parallel algorithm for the numerical solution of fractional differential equations. Fract. Calc. Appl. Anal. 14, 475–490 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Fu, H., Ng, M., Wang, H.: A divide-and-conquer fast finite difference method for space-time fractional partial differential equation. Comput. Math. Appl. 73, 1233–1242 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Jiang, S., Zhang, J., Zhang, Q., Zhang, Z.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21, 650–678 (2017)

    MathSciNet  MATH  Google Scholar 

  25. Pang, H., Qin, H., Sun, H.: All-at-once method for variable-order time fractional diffusion equations. Numer. Algor. 90, 31–57 (2021)

    MathSciNet  MATH  Google Scholar 

  26. Jia, J., Zheng, X., Fu, H., Dai, P., Wang, H.: A fast method for variable-order space-fractional diffusion equations. Numer. Algor. 85, 1519–1540 (2020)

    MathSciNet  MATH  Google Scholar 

  27. Fang, Z., Sun, H., Wang, H.: A fast method for variable-order Caputo fractional derivative with applications to time-fractional diffusion equations. Comput. Math. Appl. 80, 1443–1458 (2020)

    MathSciNet  MATH  Google Scholar 

  28. Zhang, J., Fang, Z., Sun, H.: Exponential-sum-approximation technique for variable-order time-fractional diffusion equations. J. Appl. Math. Comput. 68, 323–347 (2022)

    MathSciNet  MATH  Google Scholar 

  29. Zhang, J., Fang, Z., Sun, H.: Robust fast method for variable-order time-fractional diffusion equations without regularity assumptions of the true solutions. Appl. Math. Comput. 430, 127273 (2022)

    MathSciNet  MATH  Google Scholar 

  30. Zhang, J., Fang, Z., Sun, H.: Fast second-order evaluation for variable-order Caputo fractional derivative with applications to fractional sub-diffusion equations. Numer. Math. Theory Methods Appl. 15, 200–226 (2022)

    MathSciNet  MATH  Google Scholar 

  31. Adams, R.A., Fournier, J.J.: Sobolev Spaces. Elsevier, San Diego (2003)

    MATH  Google Scholar 

  32. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Lecture Notes in Mathematics, vol. 1054. Springer-Verlag, New York (1984)

  33. Balhoff, M.: An Introduction to Multiphase, Multicomponent Reservoir Simulation. Developments in Petroleum Science, vol. 75. Elsevier (2022)

  34. Bear, J.: Dynamics of Fluids in Porous Media. Elsevier, New York (1972)

    MATH  Google Scholar 

  35. Douglas, J., Ewing, R., Wheeler, M.: A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media. RAIRO Anal. Numer. 17, 249–265 (1983)

    MathSciNet  MATH  Google Scholar 

  36. R.E. Ewing (ed.), The Mathematics of Reservoir Simulation, in Research Frontiers in Applied Mathematics, 1, SIAM Philadelphia, 1984

  37. Wang, H., Liang, D., Ewing, R., Lyons, S., Gin, G.: An approximation to miscible fluid flows in porous media with point sources and sinks by a Eulerian-Lagrangian localized adjoint method and mixed finite element methods. SIAM J. Sci. Comput. 22, 561–581 (2000)

    MathSciNet  MATH  Google Scholar 

  38. Sharma, A., Namsani, S., Singh, J.: Molecular simulation of shale gas adsorption and diffusion in inorganic nanopores. Mol. Simul. 41, 414–422 (2015)

    Google Scholar 

  39. Ungerer, P., Collell, J., Yiannourakou, M.: Molecular modeling of the volumetric and thermodynamic properties of Kerogen: influence of organic type and maturity. Energy & Fuels 29, 91–105 (2015)

    Google Scholar 

  40. Zhokh, A., Strizhak, P.: Non-Fickian diffusion of methanol in mesoporous media: geometrical restrictions or adsorption-induced? J. Chem. Phys. 146, 124704 (2017)

    Google Scholar 

  41. Chepizhko, O., Peruani, F.: Diffusion, subdiffusion, and trapping of active particles in geterogeneous media. Phys. Rev. Lett. 111, 160604 (2013)

    Google Scholar 

  42. Dentz, M., Cortis, A., Scher, H., Berkowitz, B.: Time behavior of solute transport in heterogeneous media: transition from anomalous to normal transport. Adv. Water Resour. 27, 155–173 (2004)

    Google Scholar 

  43. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    MathSciNet  MATH  Google Scholar 

  44. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, 426–447 (2011)

    MathSciNet  MATH  Google Scholar 

  45. Zheng, X., Wang, H.: Optimal-order error estimates of finite element approximations to variable-order time-fractional diffusion equations without regularity assumptions of the true solutions. IMA J. Numer. Anal. 41, 1522–1545 (2021)

    MathSciNet  MATH  Google Scholar 

  46. Zhang, Y., Green, C., Baeumer, B.: Linking aquifer spatial properties and non-Fickian transport in mobile-immobile like alluvial settings. J. Hydrol. 512, 315–331 (2014)

    Google Scholar 

  47. Gandossi, L., Von Estorff, U.: An overview of hydraulic fracturing and other formation stimulation technologies for shale gas production. Scientific and Technical Research Reports, Joint Research Centre of the European Commission; Publications Office of the European Union (2015). https://doi.org/10.2790/379646

  48. King, G.: Hydraulic fracturing 101: What every representative, environmentalist, regulator, reporter, investor, university researcher, neighbor and engineer should know about estimating frac risk and improving frac performance in unconventional gas and oil wells. SPE Hydraulic Fracturing Technology Conference, SPE 152596, Woodlands, Texas, February 6-8 (2012)

  49. Wang, H.: An optimal-order error estimate for a family of ELLAM-MFEM approximations to porous medium flow. SIAM J. Numer. Anal. 46, 2133–2152 (2008)

    MathSciNet  MATH  Google Scholar 

  50. Pang, H., Sun, H.: A fast algorithm for the variable-order spatial fractional advection-diffusion equation. J. Sci. Comput. 87, 15 (2021)

    MathSciNet  Google Scholar 

Download references

Funding

This work was partially supported by the National Natural Science Foundation of China under Grant Nos. 11971272 and 12001337, by the Natural Science Foundation of Shandong Province under Grant ZR2019BA026, and by the National Science Foundation under Grant No. DMS-2012291.

Author information

Authors and Affiliations

Authors

Contributions

Xiangcheng Zheng and Jinhong Jia: methodology, writing—original draft. Hong Wang: conceptualization, review and editing.

Corresponding author

Correspondence to Xiangcheng Zheng.

Ethics declarations

Ethical approval

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, J., Wang, H. & Zheng, X. A fast algorithm for time-fractional diffusion equation with space-time-dependent variable order. Numer Algor 94, 1705–1730 (2023). https://doi.org/10.1007/s11075-023-01552-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-023-01552-7

Keywords

Mathematics Subject Classification (2010)

Navigation