Skip to main content
Log in

Uniform convergence of optimal order for a finite element method on a Bakhvalov-type mesh for a singularly perturbed convection-diffusion equation with parabolic layers

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper is to analyze a finite element method of any order on a Bakhvalov-type mesh in the case of 2D. By introducing a new interpolation according to the characteristics of layers, we show that the finite element method has uniform convergence of the optimal order with respect to the singular perturbation parameter. The result partially resolves an open problem introduced by Roos and Stynes (Comput. Methods Appl. Math. 15(4):531–550, 2015).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Apel, T.: Anisotropic Finite Elements: Local Estimates and Applications. Advances in Numerical Mathematics. B. G. Teubner, Stuttgart (1999)

  2. Bakhvalov, N.S.: On the optimization of the methods for solving boundary value problems in the presence of a boundary layer. Zh. Vychisl. Mat. Mat. Fiz. 9, 841–859 (1969)

    MathSciNet  Google Scholar 

  3. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brdar, M., Zarin, H.: A singularly perturbed problem with two parameters on a Bakhvalov-type mesh. J. Comput. Appl. Math. 292, 307–319 (2016). https://doi.org/10.1016/j.cam.2015.07.011

    Article  MathSciNet  MATH  Google Scholar 

  5. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems Classics in Applied Mathematics, vol. 40. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002). https://doi.org/10.1137/1.9780898719208

    Book  Google Scholar 

  6. Franz, S.: SDFEM with non-standard higher-order finite elements for a convection-diffusion problem with characteristic boundary layers. BIT 51(3), 631–651 (2011). https://doi.org/10.1007/s10543-010-0307-z

    Article  MathSciNet  MATH  Google Scholar 

  7. Franz, S., Matthies, G.: Local projection stabilisation on S-type meshes for convection–diffusion problems with characteristic layers. Computing 87 (3-4), 135–167 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Franz, S., Roos, H.: Error estimation in a balanced norm for a convection-diffusion problem with two different boundary layers. Calcolo 51(3), 423–440 (2014). https://doi.org/10.1007/s10092-013-0093-5

    Article  MathSciNet  MATH  Google Scholar 

  9. Kellogg, R.B., Stynes, M.: Corner singularities and boundary layers in a simple convection-diffusion problem. J. Differ. Equ. 213(1), 81–120 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kellogg, R.B., Stynes, M.: Sharpened bounds for corner singularities and boundary layers in a simple convection-diffusion problem. Appl. Math. Lett. 20(5), 539–544 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Linß, T.: Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems Lecture Notes in Mathematics, vol. 1985. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-05134-0

    Book  MATH  Google Scholar 

  12. Liu, X., Stynes, M., Zhang, J.: Supercloseness of edge stabilization on Shishkin rectangular meshes for convection–diffusion problems with exponential layers. IMA J. Numer. Anal. 38(4), 2105–2122 (2018). https://doi.org/10.1093/imanum/drx055

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu, X., Zhang, J.: Supercloseness of linear streamline diffusion finite element method on Bakhvalov-type mesh for singularly perturbed convection-diffusion equation in 1D. Appl. Math. Comput. 430(9), 127, 258 (2022). https://doi.org/10.1016/j.amc.2022.127258

    Article  MathSciNet  MATH  Google Scholar 

  14. Roos, H., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations Springer Series in Computational Mathematics, 2nd edn., vol. 24. Springer, Berlin (2008)

    MATH  Google Scholar 

  15. Roos, H.G.: Error estimates for linear finite elements on Bakhvalov-type meshes. Appl. Math. 51(1), 63–72 (2006). https://doi.org/10.1007/s10492-006-0005-y

    Article  MathSciNet  MATH  Google Scholar 

  16. Roos, H.G., Stynes, M.: Some open questions in the numerical analysis of singularly perturbed differential equations. Comput. Methods Appl. Math. 15(4), 531–550 (2015). https://doi.org/10.1515/cmam-2015-0011

    Article  MathSciNet  MATH  Google Scholar 

  17. Russell, S., Stynes, M.: Balanced-norm error estimates for sparse grid finite element methods applied to singularly perturbed reaction-diffusion problems. J. Numer. Math. 27(1), 37–55 (2019). https://doi.org/10.1515/jnma-2017-0079

    Article  MathSciNet  MATH  Google Scholar 

  18. Shishkin, G.I.: Grid Approximation of Singularly Perturbed Elliptic and Parabolic Equations (In Russian). Second Doctoral Thesis. Keldysh Institute, Moscow (1990)

    Google Scholar 

  19. Stynes, M., O’Riordan, E.: A uniformly convergent Galerkin method on a Shishkin mesh for a convection-diffusion problem. J. Math. Anal. Appl. 214(1), 36–54 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Stynes, M., Stynes, D.: Convection-diffusion problems, graduate studies in mathematics, vol. 196. American Mathematical Society, Providence, RI; Atlantic Association for Research in the Mathematical Sciences (AARMS), Halifax (2018). https://doi.org/10.1090/gsm/196. An introduction to their analysis and numerical solution

    Book  MATH  Google Scholar 

  21. Teofanov, L., Brdar, M., Franz, S., Zarin, H.: SDFEM for an elliptic singularly perturbed problem with two parameters. Calcolo 55(4), 50, 20 (2018). https://doi.org/10.1007/s10092-018-0293-0

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang, J., Liu, X.: Superconvergence of finite element method for singularly perturbed convection-diffusion equations in 1D. Appl. Math. Lett. 98, 278–283 (2019). https://doi.org/10.1016/j.aml.2019.06.018

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, J., Liu, X.: Optimal order of uniform convergence for finite element method on Bakhvalov-type meshes. J. Sci. Comput. 85(1), 2 (2020). https://doi.org/10.1007/s10915-020-01312-y

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, J., Liu, X.: Convergence and supercloseness in a balanced norm of finite element methods on Bakhvalov-type meshes for reaction-diffusion problems. J. Sci. Comput. 88(1), 27 (2021). https://doi.org/10.1007/s10915-021-01542-8

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang, J., Liu, X.: Supercloseness of linear finite element method on Bakhvalov-type meshes for singularly perturbed convection-diffusion equation in 1D. Appl. Math. Lett. 111(106), 624 (2021). https://doi.org/10.1016/j.aml.2020.106624

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang, J., Liu, X.: Convergence of a finite element method on a bakhvalov-type mesh for a singularly perturbed convection–diffusion equation in 2D. Numer. Methods Partial Differential Equations 39(2), 1201–1219 (2023). https://doi.org/10.1002/num.22930

    Article  MathSciNet  Google Scholar 

  27. Zhang, J., Liu, X.: Supercloseness and postprocessing for linear finite element method on Bakhvalov-type meshes. Numer Algorithms. https://doi.org/10.1007/s11075-022-01353-4 (2023)

  28. Zhang, J., Liu, X., Yang, M.: Optimal order l2 error estimate of SDFEM on Shishkin triangular meshes for singularly perturbed convection-diffusion equations. SIAM J. Numer. Anal. 54(4), 2060–2080 (2016). https://doi.org/10.1137/15M101035X

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang, J., Lv, Y.: Finite element method for singularly perturbed problems with two parameters on a Bakhvalov-type mesh in 2D. Numer. Algorithms 90(1), 447–475 (2022). https://doi.org/10.1007/s11075-021-01194-7

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang, J., Lv, Y.: Supercloseness of finite element method on a Bakhvalov-type mesh for a singularly perturbed problem with two parameters. Appl. Numer. Math. 171, 329–352 (2022). https://doi.org/10.1016/j.apnum.2021.09.010

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, J., Stynes, M.: Supercloseness of continuous interior penalty method for convection–diffusion problems with characteristic layers. Comput. Methods Appl. Mech. Engrg. 319, 549–566 (2017). https://doi.org/10.1016/j.cma.2017.03.013

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referees for their valuable comments and suggestions that led us to improve this paper.

Funding

This research is supported by the National Natural Science Foundation of China (11771257) and Shandong Provincial Natural Science Foundation (ZR2021MA004).

Author information

Authors and Affiliations

Authors

Contributions

Xiaowei Liu developed the idea for the study. Jin Zhang wrote the main manuscript text. The authors revised and reviewed the manuscript.

Corresponding author

Correspondence to Jin Zhang.

Ethics declarations

Ethical approval

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhang, J. Uniform convergence of optimal order for a finite element method on a Bakhvalov-type mesh for a singularly perturbed convection-diffusion equation with parabolic layers. Numer Algor 94, 459–478 (2023). https://doi.org/10.1007/s11075-023-01508-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-023-01508-x

Keywords

Mathematics Subject Classification (2010)

Navigation