Skip to main content
Log in

A neurodynamic approach to zero-one quadratic programming

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper proposes a neurodynamic approach to zero-one quadratic programming with linear constraints. Compared with one existing neurodynamic approach to such problems, the proposed one has lower dimensions of state variables and less computational cost, which makes the implementation easier. Under some suitable conditions, the stability and convergence properties of the proposed approach are established. Numerical simulation results and related comparisons show the efficiency of this proposed method in practical computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Li, D, Sun, X: Nonlinear Integer Programming. Springer, New York (2006)

    MATH  Google Scholar 

  2. Hosseinian, S., Butenko, S.: Algorithms for the generalized independent set problem based on a quadratic optimization approach. Optim. Lett. 13, 1211–1222 (2019)

    Article  MathSciNet  Google Scholar 

  3. Krarup, J., Pruzan, P.A.: Computer aided layout design. Math. Prog. Study 9, 75–94 (1978)

    Article  MathSciNet  Google Scholar 

  4. Xu, C.T., He, X., Huang, T.W., Huang, J.J.: A combined neurodynamic approach to optimize the real-time price-based demand response management problem using mixed zero-one programming. Neural Computing Appl. 32, 8799–8809 (2020)

    Article  Google Scholar 

  5. He, X., Chen, A., Chaovalitwongse, W.A., Lin, H.X.: An improved linearization technique for a class of quadratic 0-1 problems. Optim. Lett. 6, 31–41 (2012)

    Article  MathSciNet  Google Scholar 

  6. Pardalos, P.M., Rodgers, G.: Computational aspects of a branch and bound algorithm for quadratic zero-one programming. Computing 45, 131–144 (1990)

    Article  MathSciNet  Google Scholar 

  7. Lu, C., Guo, X.: Convex reformulation for binary quadratic programming problems via average objective value maximization. Optim. Lett. 9, 523–535 (2015)

    Article  MathSciNet  Google Scholar 

  8. Hoai, L.T., Tao, P.D.: A continuous approch for globally solving linearly constrained quadratic zero-one programming problems. Optimization 50, 93–120 (2001)

    Article  MathSciNet  Google Scholar 

  9. Zhu, W.X.: Penalty parameter for linearly constrained 0-1 quadratic programming. J. Optim. Theory Appl. 116, 229–239 (2003)

    Article  MathSciNet  Google Scholar 

  10. Billionnet, A., Elloumi, S., Plateau, M.C.: Improving the performance of standard solvers for quadratic 0-1 programs by a tight convex reformulation: the QCR method. Discrete. Appl. Math. 157, 1185–1197 (2009)

    Article  MathSciNet  Google Scholar 

  11. Liao, L.Z., Qi, H.D., Qi, L.Q.: Neurodynamical Optimization. J. Global Optim. 28, 175–195 (2004)

    Article  MathSciNet  Google Scholar 

  12. Ou, Y.G., Lin, H.C.: A continuous method model for solving general variational inequality. Inter. J. Comput. Math. 93, 1899–1920 (2016)

    Article  MathSciNet  Google Scholar 

  13. Yan, Z., Fan, J., Wang, J.: A collective neurodynamic approach to constrained global optimization. IEEE Trans. Neural Netw. Learn. Syst. 28, 1206–1215 (2017)

    Article  Google Scholar 

  14. Mansoori, A., Erfanian, M.: A dynamic model to solve the absolute value equations. J. Comput. Appl. Math. 333, 28–35 (2018)

    Article  MathSciNet  Google Scholar 

  15. Sun, L.M., Liao, L.Z.: An interior point continuous path-following trajectory for linear programming. J. Ind. Manag. Optimi. 15, 1517–1534 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Che, H., Wang, J.: A collaborative neurodynamic approach to global and combinatorial optimization. Neural Netw. 114, 15–27 (2019)

    Article  Google Scholar 

  17. Che, H., Wang, J.: A two-timescale duplex neurodynamic approach to mixed-integer optimization. IEEE Trans. Neural Netw. Learn. Syst. 31, 1–13 (2020)

    Article  Google Scholar 

  18. Liu, S.X., Jiang, H.J., Zhang, L.W., Mei, X.H.: A neurodynamic optimization approach for complex-variables programming problem. Neural Netw. 129, 280–287 (2020)

    Article  Google Scholar 

  19. Jiang, X.R., Qin, S.T., Xue, X.P.: A penalty-like neurodynamic approach to constrained nonsmooth distributed convex optimization. Neurocomputing 377, 225–233 (2020)

    Article  Google Scholar 

  20. Mansoori, A., Effati, S.: An efficient neurodynamic model to solve nonlinear programming problems with fuzzy parameters. Neurocomputing 334, 125–133 (2019)

    Article  Google Scholar 

  21. Nikseresht, A., Nazemi, A.: A novel neural network for solving semidefinite programming problems with some applications. J. Comput. Appl. Math. 350, 309–323 (2019)

    Article  MathSciNet  Google Scholar 

  22. Aourid, M., Do, X.D., Kaminska, B.: Penalty formulation for 0-1 linear programming problem: a neural network approach. IEEE Neural Netw. 2, 1092–1095 (1993)

    Article  Google Scholar 

  23. Aourid, M., Kaminska, B.: Neural networks for solving the quadratic 0-1 programming problem under linear constraints. IEEE Neural Netw. 4, 1690–1693 (1995)

    Google Scholar 

  24. Ranjbar, M., Effati, S., Miri, S.M.: An artificial neural network for solving quadratic zero-one programming problems. Neurocomputing 235, 192–198 (2017)

    Article  Google Scholar 

  25. Han, J.Y., Xiu, N.H., Qi, H.D.: Nonlinear Complementarity: Theory and Algorithm. Shanghai Science and Technology Press, Shanghai (2006)

    Google Scholar 

  26. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (2006)

    MATH  Google Scholar 

  27. Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs (1991)

    MATH  Google Scholar 

  28. Zhang, S.W., Constantinides, A.G.: Lagrange programming neural networks. IEEE Trans. Circuits Syst. 39, 441–452 (1992)

    Article  Google Scholar 

  29. Han, Q.M., Liao, L.Z., Qi, H.D., Q, L.Q.: Stability analysis of gradient-based neural networks for optimization problems. J. Global Optim. 19, 363–381 (2001)

    Article  MathSciNet  Google Scholar 

  30. Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction to Global Optimization. Kluwer Academic Publishers, 2 (2000)

    Book  Google Scholar 

  31. Hu, Y.Q.: Fundamentals and Applications of Operations Research, 4th edn. Higher Education Press, Beijing (2004)

    Google Scholar 

  32. Bazaraa, M.S., Jarvis, J.J., Sherali, H.D.: Linear Programming and Network Flows. Wiley, New York (1990)

    MATH  Google Scholar 

  33. Omidi, F., Abbasi, B., Nazemi, A.: An efficient dynamic model for solving a portfolio selection with uncertain chance constraint models. J. Comput. Appl. Math. 319, 43–55 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the anonymous referees and the associate editor for their valuable comments and constructive suggestions that greatly improved this paper.

Funding

This work is partially supported by NNSF of China (Nos. 11961018, 61762032) and NSF of Hainan Province (No. 120QN175)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yigui Ou.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, Y., Lin, H. A neurodynamic approach to zero-one quadratic programming. Numer Algor 88, 1251–1274 (2021). https://doi.org/10.1007/s11075-021-01075-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01075-z

Keywords

Mathematics subject classification (2010)

Navigation