Skip to main content
Log in

A direct discontinuous Galerkin finite element method for convection-dominated two-point boundary value problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The direct discontinuous Galerkin (DDG) finite element method, using piecewise polynomials of degree k ≥ 1 on a Shishkin mesh, is applied to convection-dominated singularly perturbed two-point boundary value problems. Consistency, stability and convergence of order k (up to a logarithmic factor) are proved in an energy-type norm appropriate to the method and problem. The results are robust, i.e., they hold uniformly for all values of the singular perturbation parameter. Numerical experiments confirm the theoretical convergence rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Brenner, S.C., Ridgway Scott, L.: The Mathematical Theory of Finite Element Methods, Volume 15 of Texts in Applied Mathematics, 3rd edn. Springer, New York (2008)

    Book  Google Scholar 

  2. Cao, W., Liu, H., Zhang, Z.: Superconvergence of the direct discontinuous Galerkin method for convection-diffusion equations. Numer Methods Partial Diff. Equ. 33(1), 290–317 (2017)

    Article  MathSciNet  Google Scholar 

  3. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems, Volume 40 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2002). Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)]

    Book  Google Scholar 

  4. Clavero, C., Gracia, J.L., O’Riordan, E.: A parameter robust numerical method for a two dimensional reaction-diffusion problem. Math. Comp. 74(252), 1743–1758 (2005)

    Article  MathSciNet  Google Scholar 

  5. Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods, Volume 69 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Heidelberg (2012)

    Google Scholar 

  6. Liu, H., Yan, J.: The direct discontinuous Galerkin (DDG) methods for diffusion problems. SIAM J. Numer. Anal. 47(1), 675–698 (2008/09)

    Article  MathSciNet  Google Scholar 

  7. Liu, H., Yan, J.: The direct discontinuous Galerkin (DDG) method for diffusion with interface corrections. Commun. Comput. Phys. 8(3), 541–564 (2010)

    Article  MathSciNet  Google Scholar 

  8. Meng, X., Shu, C.-W., Wu, B.: Optimal error estimates for discontinuous Galerkin methods based on upwind-biased fluxes for linear hyperbolic equations. Math. Comp. 85(299), 1225–1261 (2016)

    Article  MathSciNet  Google Scholar 

  9. Nhan, T.A., Stynes, M., Vulanović, R.: Optimal uniform-convergence results for convection-diffusion problems in one dimension using preconditioning. J. Comput. Appl Math. 338, 227–238 (2018)

    Article  MathSciNet  Google Scholar 

  10. Roos, H.-G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations, Volume 24 of Springer Series in Computational Mathematics, 2nd edn. Springer, Berlin (2008). Convection-diffusion-reaction and flow problems

    MATH  Google Scholar 

  11. Shen, J., Tang, T., Wang, L.-L.: Spectral Methods, Volume 41 of Springer Series in Computational Mathematics. Springer, Heidelberg (2011). Algorithms, analysis and applications

    Google Scholar 

  12. Shishkin, G.I.: Grid approximation of singularly perturbed systems of elliptic and parabolic equations with convective terms. Differ. Uravn. 34(12), 1686–1696, 1727 (1998)

    MathSciNet  Google Scholar 

  13. Stynes, M., Stynes, D.: Convection-Diffusion Problems: An Introduction to Their Analysis and Numerical Solution, Volume 196 of Graduate Studies In Mathematics. American Mathematical Society, Providence (2018)

    Book  Google Scholar 

  14. Stynes, M., Tobiska, L.: The SDFEM for a convection-diffusion problem with a boundary layer: Optimal error analysis and enhancement of accuracy. SIAM J. Numer. Anal. 41(5), 1620–1642 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The research of Martin Stynes is supported in part by the National Natural Science Foundation of China under grant NSAF-U1530401.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Stynes.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

In this Appendix, we collect some standard results from finite element analysis. The three lemmas that follow are valid under the hypotheses stated for each lemma (i.e., they are not specifically for Shishkin meshes).

Lemma 10 (inverse inequality)

[1, Lemma 4.5.3]. LetD ⊂ [0, 1] be partitioned by a quasiuniform mesh of diameter d and\(\mathbb {V}\)bea finite-dimensional subspace of\({W^{l}_{p}}(D)\cap {W^{m}_{q}}(D)\), where 1 ≤ p,1 ≤ qand 0 ≤ lm. Then, there exists a constant C such that forall\(v\in \mathbb {V}\), one has

$$ \begin{array}{@{}rcl@{}} \|v\|{~}_{m,p,D}\leq C d^{l-m+1/p-1/q} \|v\|{~}_{l,q,D}. \end{array} $$

Lemma 11 (Bramble-Hilbert lemma)

[3, Theorem 4.1.3] Suppose\(D \subset \mathbb {R}\)isan interval. For non-negative integer kand 0 ≤ q, let L be a continuous linear functional on the Sobolev spaceWk+ 1, q(D) with the property thatL(w) = 0 for all\(w\in \mathbb {P}_{k}(D)\). Then, there is a constantC(D) such that

$$ \begin{array}{@{}rcl@{}} |Lv|\leq C(D)\|L\|{~}_{k+1,q,D}^{*}|v|{~}_{k+1,q,D}, \end{array} $$

where\(\|L\|{~}_{k+1,q,D}^{*}\)is the norm inthe dual space ofWk+ 1, q(D).

Lemma 12

[3, Theorem 3.1.2] Let D and\(\overline {D}\)betwo subintervals of\(\mathbb {R}\). Let\( F:\overline {D} \to D\)bean invertible affine mapping defined by\(F(\overline {x})=B \overline {x}+b\)with\(D = F(\overline {D})\). LetvWm, p(D) for some integerm ≥ 0 and somep ∈ [1, ]. Then, the function\(\overline {v} = v\circ F \in W^{m,p}(\overline {D})\)and\(|\overline {v}|{~}_{m,p,\overline {D}}\lesssim |B|{~}^{m-1/p} |v|{~}_{m,p,D}\)forallvWm, p(D). Analogously, one has\(|v|{~}_{m,p,D} \lesssim |B|{~}^{-m+1/p} |\overline {v}|{~}_{m,p,\overline {D}}\)forall\(\overline {v}\in W^{m,p}(\overline {D})\).

Appendix 2

1.1 Proof of Lemma 5

We prove this lemma for an arbitrary general mesh. The interval Ij is affine equivalent to ω := [− 1, 1] through the linear mapping

$$ \begin{array}{@{}rcl@{}} x=\frac{x_{j-1}+x_{j}}{2} + \frac{h_{j}}{2}\overline{x}\ \text{ for } \overline{x}\in\omega. \end{array} $$

For m = 0, 1,..., let Lm be the mth Legendre polynomial on the interval [− 1, 1] (see [11, Chapter 3.3] for the properties of Legendre polynomials). Let Lj, m be Lm mapped to the interval Ij, i.e., \(L_{j,m}(x)=L_{m}(\overline {x})\). Each function wL2(Ij) can be expanded as a sum of Legendre polynomials: \(w={\sum }_{j=0}^{\infty }w_{j,m}L_{j,m}\), where

$$ \begin{array}{@{}rcl@{}} w_{j,m}:=\frac{2m-1}{2}{\int}_{x_{j-1}}^{x_{j}}w(x)L_{j,m}(x) dx \text{ for } \ m=0, 1,... \end{array} $$

Furthermore, the L2(Ω) projection defined in (17) can be expressed as

$$ \begin{array}{@{}rcl@{}} Pw(x)|{~}_{I_{j}}=\sum\limits_{m=0}^{k}w_{j,m}L_{j,m}(x) \text{ for } x\in I_{j} \text{ and }1\leq j\leq N. \end{array} $$

Then, the mapped projection is

$$ \begin{array}{@{}rcl@{}} \overline{P}\overline{w}(\overline{x})=\sum\limits_{m=0}^{k}w_{j,m}L_{m}(\overline{x}) \text{ for } \overline{x}\in \omega \text{ and }1\leq j\leq N. \end{array} $$

It follows that for any polynomial \(v\in \mathbb {P}^{k}(\omega )\), one has \(\overline {P}v=v\).

By Lemma 12, we have

$$ \begin{array}{@{}rcl@{}} |Pw-w|{~}_{m,p,I_{j}} &=&\left|\sum\limits_{j=k+1}^{\infty}w_{j,m}L_{j,m}(x)\right|{~}_{m,p,I_{j}}\\ &\lesssim& h_{j}^{-m+\frac{1}{p}}\left|\sum\limits_{j=k+1}^{\infty}w_{j,m}L_{m}(\overline{x})\right|{~}_{m,p,\omega}\\ &= &h_{j}^{-m+\frac{1}{p}}|(\overline{P}- I)\overline{w}|{~}_{m,p,\omega}. \end{array} $$

But Lemma 11 gives

$$ \begin{array}{@{}rcl@{}} |(\overline{P}- I)\overline{w}|{~}_{m,p,\omega} \lesssim C\|\overline{P}- I\|{~}_{k+1,q,\omega}^{*}|\overline{w}|{~}_{k+1,q,\omega}\ \text{ for }m\leq k+1, \end{array} $$

where \(C\|\overline {P}- I\|{~}_{k+1,q,\omega }^{*}\) is a constant independent of \(\overline {w}\). Using these results and again invoking Lemma 12, we get

$$ \begin{array}{@{}rcl@{}} |Pw-w|{~}_{m,p,I_{j}}\lesssim h_{j}^{k+1-m+1/p-1/q}|w|{~}_{k+1,q,\omega} . \end{array} $$

Hence, taking p = q = 2, we get (18b) for mk + 1; taking p = and q = 2, we get (18c) for mk + 1.

Finally, to prove (18a), by (18b), we have

$$ \begin{array}{@{}rcl@{}} \|Pw\|{~}_{m,I_{j}}&\lesssim& \sum\limits_{i=0}^{m}|Pw-w|{~}_{i,I_{j}}+ \|w\|{~}_{m,I_{j}}\\ &\lesssim& \sum\limits_{i=0}^{m}(h_{j})^{m-i}|w|{~}_{m,I_{j}} + \|w\|{~}_{m,I_{j}}\\ &\lesssim& \|w\|{~}_{m,I_{j}}. \end{array} $$

1.2 Proof of Lemma 6

The next inequality, which follows from (14), will be used frequently:

$$ \begin{array}{@{}rcl@{}} {\int}_{\tau}^{1}e^{-2\beta x/\varepsilon}dx=\frac{\varepsilon}{2\beta}\left( N^{-2\sigma}-e^{-2\beta/\varepsilon}\right)\lesssim \varepsilon N^{-2\sigma}. \end{array} $$
(22)

From (13), (16), (22), and Lemma 5, for ∈ {0, 1}, one has

$$ \begin{array}{@{}rcl@{}} \sum\limits_{j=1}^{N/2}\|PE-E\|{~}^{2}_{\ell,I_{j}}&\lesssim& \sum\limits_{j=1}^{N/2} h^{2k+2-2\ell}|E|{~}^{2}_{k+1,I_{j}}\\ &\lesssim& \left( \varepsilon N^{-1} \ln N\right)^{2k+2-2\ell} \varepsilon^{-2k-2} {\int}_{0}^{\tau} e^{-2\beta x/\varepsilon} dx\\ &\lesssim& \varepsilon^{1-2\ell} \left( N^{-1}\ln N\right)^{2k+2-2\ell}. \end{array} $$
(23)

By (18a) and (22), for ∈ {0, 1}, one has

$$ \begin{array}{@{}rcl@{}} \sum\limits_{j=N/2+1}^{N}\|PE\|{~}^{2}_{\ell,I_{j}} &\!\lesssim\!&\!\sum\limits_{j=N/2+1}^{N}\|E\|{~}^{2}_{\ell,I_{j}} \!\lesssim\! \varepsilon^{-2\ell}{\int}_{\tau}^{1}e^{-2\beta x/\varepsilon}dx \!\lesssim\! \varepsilon^{1-2\ell} N^{-2\sigma}. \end{array} $$
(24)

Using (13) and Lemma 5, for ∈ {0, 1}, we get

$$ \begin{array}{@{}rcl@{}} \sum\limits_{j=1}^{N/2}\|PS-S\|{~}_{\ell,I_{j}}^{2} &\lesssim& \sum\limits_{j=1}^{N/2} h^{2k+2-2\ell} |S|{~}_{k+1,I_{j}}^{2} \lesssim \left( \varepsilon N^{-1}\ln N\right)^{2k+2-2\ell} \end{array} $$
(25)

and

$$ \begin{array}{@{}rcl@{}}\sum\limits_{j=N/2+1}^{N}\|PS-S\|{~}_{\ell,I_{j}}^{2} &\lesssim& \sum\limits_{j=N/2+1}^{N} H^{2k+2-2\ell} |S|{~}_{k+1,I_{j}}^{2} \lesssim N^{-2k-2+2\ell}. \end{array} $$
(26)

Note that \(\|Pu-u\|{~}_{\ell ,I_{j}}\lesssim \|PE-E\|{~}_{\ell ,I_{j}}+\|PS-S\|{~}_{\ell ,I_{j}}\). Then by (23)–(26), for ∈ {0, 1}, one has

$$ \begin{array}{@{}rcl@{}} \sum\limits_{j=1}^{N/2}\|Pu-u\|{~}_{\ell,I_{j}}^{2} &\lesssim &\varepsilon^{1-2\ell}\left( N^{-1}\ln N\right)^{2k+2-2\ell} +\left( \varepsilon N^{-1}\ln N\right)^{2k+2-2\ell}\\ &\lesssim& \varepsilon^{1-2\ell}\left( N^{-1}\ln N\right)^{2k+2-2\ell}\end{array} $$

and

$$ \begin{array}{@{}rcl@{}} \sum\limits_{j=N/2+1}^{N}|Pu-u|{~}_{\ell,I_{j}}^{2} &\lesssim \varepsilon^{1-2\ell} N^{-2\sigma}+N^{-2k-2+2\ell}. \end{array} $$

This completes the proof.

1.3 Proof of Lemma 7

For m ∈ {0, 1, 2}, Lemma 5 gives (cf. proof of (23) above)

$$ \begin{array}{@{}rcl@{}} \sum\limits_{j=1}^{N/2}h_{j}^{2m-1}\|PE-E\|{~}^{2}_{m,\infty,I_{j}} &\lesssim& \sum\limits_{j=1}^{N/2}h^{2k}|E|{~}^{2}_{k+1,I_{j}} \lesssim \varepsilon^{-1} \left( N^{-1}\ln N\right)^{2k},\\ \sum\limits_{j=1}^{N/2}h_{j}^{2m-1}\|PS-S\|{~}^{2}_{m,\infty,I_{j}} &\lesssim& \sum\limits_{j=1}^{N/2}h^{2k}|S|{~}^{2}_{k+1,I_{j}} \lesssim \left( \varepsilon N^{-1}\ln N\right)^{2k},\\ \sum\limits_{j=N/2+1}^{N}h_{j}^{2m-1}\|PS-S\|{~}^{2}_{m,\infty,I_{j}} &\lesssim& \sum\limits_{j=N/2+1}^{N}H^{2k}|S|{~}^{2}_{k+1,I_{j}} \lesssim N^{-2k}. \end{array} $$

We have now proved (20a), (20b), and (20c).

Next, by the inverse inequality of Lemma 10 and (24), one has

$$ \begin{array}{@{}rcl@{}} \sum\limits_{j=N/2+1}^{N} h_{j}^{2m-1}\|PE\|{~}^{2}_{m,\infty,I_{j}} &\lesssim \sum\limits_{j=N/2+1}^{N}H^{-2}\|PE\|{~}^{2}_{0,I_{j}}\lesssim \varepsilon N^{-2\sigma+2}. \end{array} $$

Finally, (13) yields

$$ \begin{array}{@{}rcl@{}} \sum\limits_{j=N/2+1}^{N} h_{j}^{2m-1}\|E\|{~}^{2}_{m,\infty,I_{j}} &\lesssim& H^{2m-2}\varepsilon^{-2m}\sum\limits_{j=N/2+1}^{N} He^{-2\beta x_{j-1}/\varepsilon}\\ &\lesssim& N^{2-2m}\varepsilon^{-2m}{\int}_{\tau}^{1}e^{-2\beta x/\varepsilon}dx\\ &\lesssim& \varepsilon^{1-2m} N^{2-2\sigma-2m}. \end{array} $$

This completes the proof.

1.4 Proof of Lemma 6

By Lemma 7 with m = 0, since σ = k + 1, we obtain

$$ \begin{array}{@{}rcl@{}} \sum\limits_{j=N/2+1}^{N} h_{j}^{-1}\|PE-E\|{~}_{0,\infty,I_{j}}^{2} &\lesssim& \sum\limits_{j=N/2+1}^{N}H^{-1}\left( \|PE\|{~}_{0,\infty,I_{j}}^{2}+\|E\|{~}_{0,\infty,I_{j}}^{2}\right)\\ &\lesssim& \varepsilon N^{-2k}. \end{array} $$
(27)

But

$$ \begin{array}{@{}rcl@{}} \|Pu-u\|{~}_{0,\infty,I_{j}}\lesssim \|PE-E\|{~}_{0,\infty,I_{j}}+\|PS-S\|{~}_{0,\infty,I_{j}}\ \text{ for all }j. \end{array} $$
(28)

Thus, Lemma 7 (with σ = k + 1) and (27) give

$$ \begin{array}{@{}rcl@{}} \sum\limits_{j=1}^{N/2}h_{j}^{-1}\|Pu-u\|{~}_{0,\infty,I_{j}}^{2}&\lesssim &\varepsilon^{-1}\left( N^{-1}\ln N\right)^{2k}+\left( \varepsilon N^{-1}\ln N\right)^{2k}\\ &\lesssim& \varepsilon^{-1}\left( N^{-1}\ln N\right)^{2k}\end{array} $$

and

$$ \begin{array}{@{}rcl@{}} \sum\limits_{j=N/2+1}^{N}h_{j}^{-1}\|Pu-u\|{~}_{0,\infty,I_{j}}^{2} &\lesssim \varepsilon^{} N^{-2k}+N^{-2k}\lesssim N^{-2k}. \end{array} $$

Hence,

$$ \begin{array}{@{}rcl@{}} &&{\kern-3.7pc}\sum\limits_{j=0}^{N}\frac{\beta_{0}}{h_{j}}[Pu-u]_{j}^{2} \\ &\lesssim& \sum\limits_{j=1}^{N/2}h^{-1}\|Pu-u\|{~}_{0,\infty,I_{j}}^{2} + h^{-1}\|Pu-u\|{~}_{0,\infty,I_{N/2+1}}^{2} \\ &\qquad& +\sum\limits_{j=N/2+1}^{N}H^{-1}\|Pu-u\|{~}_{0,\infty,I_{j}}^{2}\\ &\lesssim &\sum\limits_{j=1}^{N/2}h^{-1}\|Pu-u\|{~}_{0,\infty,I_{j}}^{2} + \frac{H}{h}\sum\limits_{j=N/2+1}^{N}H^{-1}\|Pu-u\|{~}_{0,\infty,I_{j}}^{2}\\ &\lesssim& \varepsilon^{-1}\left( N^{-1}\ln N\right)^{2k} +\left( \varepsilon\ln N\right)^{-1} \left( N^{-2k}\right)\\ &\lesssim& \varepsilon^{-1}\left( N^{-1}\ln N\right)^{2k}. \end{array} $$

This inequality and Lemma 6 (with σ = k + 1) yield finally

$$ \begin{array}{@{}rcl@{}} \|Pu-u\|{~}_{DG}^{2} &=& \varepsilon\left( |Pu-u|{~}_{1}^{2} +\sum\limits_{j=0}^{N}\frac{\beta_{0}}{h_{j}}[Pu-u]_{j}^{2}\right) +\|Pu-u\|{~}_{0}^{2}\\ &\lesssim& \varepsilon\left[\varepsilon^{-1}\left( N^{-1}\ln N\right)^{2k} + \varepsilon^{-1}N^{-2k-2} + N^{-2k}\right] \\ &\qquad& + \varepsilon \left( N^{-1}\ln N\right)^{2k+2}+N^{-2k-2} \\ &\lesssim& \left( N^{-1}\ln N\right)^{2k}. \end{array} $$

1.5 Proof of Lemma 9

The definition (5) gives \(\widehat {(Pu-u)}|{~}_{i} = (Pu-u)^{\prime }(x_{i})\) for i ∈ {0, N} and

$$ \widehat{(Pu-u)}|{~}_{j} = \frac{\beta_{0}}{h_{j}}[Pu-u]_{j} +\{(Pu-u)^{\prime}\}_{j} +\beta_{1} h_{j}[(Pu-u)^{\prime\prime}]_{j} $$

for j = 1, 2,…, N − 1. Now, two Cauchy-Schwarz inequalities show that

$$ \begin{array}{@{}rcl@{}} \sum\limits_{j=0}^{N}&&|\widehat{(Pu-u)}_{j}[ v_{h} ]_{j}+[Pu-u]_{j}\{v_{h}^{\prime}\}_{j}| \\ &&\lesssim \left[\sum\limits_{j=0}^{N}\left( \frac{\beta_{0}}{h_{j}}[Pu-u]_{j}^{2}+h_{j}\{(Pu-u)^{\prime}\}_{j}^{2} +\frac{{\beta_{1}^{2}}}{\beta_{0}} {h_{j}^{3}}[(Pu-u)^{\prime\prime}]_{j}^{2}\right)\right]^{1/2} \\ &&\qquad\times \left\{ \left[\sum\limits_{j=0}^{N}\frac{\beta_{0}}{h_{j}}[ v_{h} ]_{j}^{2}\right]^{1/2} +\left[\sum\limits_{j=0}^{N}\frac{h_{j}}{\beta_{0}}\{v_{h}^{\prime}\}_{j}^{2} \right]^{1/2} \right\}. \end{array} $$
(29)

We shall estimate the various terms in (29).

Lemma 6 yields

$$ \begin{array}{@{}rcl@{}} \sum\limits_{j=0}^{N}\frac{\beta_{0}}{h_{j}}[Pu-u]_{j}^{2}\lesssim \varepsilon^{-1}\left( N^{-1}\ln N \right)^{2k}. \end{array} $$
(30)

From Lemma 7 and σ = k + 1, one obtains

$$ \begin{array}{@{}rcl@{}} \sum\limits_{j=0}^{N}h_{j}\{(PE-E)^{\prime} \}_{j}^{2} &\lesssim& \sum\limits_{j=1}^{N/2}h^{}\|PE-E\|{~}_{1,\infty,I_{j}}^{2} + \sum\limits_{j=N/2+1}^{N}H^{}\|PE-E\|{~}_{1,\infty,I_{j}}^{2}\\ &\lesssim& \varepsilon^{-1}\left( N^{-1}\ln N \right)^{2k}+ \varepsilon N^{-2k} +\varepsilon^{-1}N^{-2k-2} \\ &\lesssim& \varepsilon^{-1}\left( N^{-1}\ln N \right)^{2k}. \end{array} $$
(31)

As EC[0, 1], we see that

$$ \begin{array}{@{}rcl@{}} &&{\kern-3.8pc}\sum\limits_{j=0}^{N} \frac{{\beta_{1}^{2}}}{\beta_{0}} (h_{j})^{3}[(PE-E)^{\prime\prime}]_{j}^{2}\\ &\lesssim& \sum\limits_{j=1}^{N/2+1}h^{3}\|PE-E\|{~}_{2,\infty,I_{j}}^{2}. \\ &\qquad&+\sum\limits_{j=N/2+1}^{N}H^{3}\left( \lim\limits_{x\rightarrow x_{j}^{+}}(PE-E)^{\prime\prime}(x) -\lim\limits_{x\rightarrow x_{j}^{-}}(PE-E)^{\prime\prime}(x) \right)^{2}\\ &\lesssim& \sum\limits_{j=1}^{N/2+1}h^{3}\|PE-E\|{~}_{2,\infty,I_{j}}^{2}+\sum\limits_{j=N/2+1}^{N}H^{3}\|PE\|{~}_{2,\infty,I_{j}}^{2}\\ &\lesssim& \varepsilon^{-1}\left( N^{-1}\ln N\right)^{2k} + \varepsilon N^{-2k}\\ &\lesssim& \varepsilon^{-1}\left( N^{-1}\ln N\right)^{2k}, \end{array} $$
(32)

where we used Lemma 7 and σ = k + 1. Turning now to the contributions of the smooth component S of u to (29), by Lemma 7, one has

$$ \begin{array}{@{}rcl@{}} \sum\limits_{j=0}^{N}h_{j} &&\{(PS-S)^{\prime} \}_{j}^{2} +{h_{j}^{3}}[(PS-S)^{\prime\prime}]_{j}^{2} \\ &\lesssim& \sum\limits_{j=0}^{N} h_{j}\|PS-S\|{~}_{1,\infty,I_{j}}^{2}+\sum\limits_{j=0}^{N} {h_{j}^{3}}\|PS-S\|{~}_{2,\infty,I_{j}}^{2}\\ &\lesssim& N^{-2k}. \end{array} $$
(33)

Finally, an inverse inequality (Lemma 10) yields

$$ \sum\limits_{j=0}^{N} h_{j}\{v_{h}^{\prime}\}_{j}^{2} \le \sum\limits_{j=0}^{N} h_{j}\|v_{h}\|{~}_{1,\infty,I_{j}}^{2} \lesssim \sum\limits_{j=0}^{N} |v_{h}|{~}_{1,I_{j}}^{2}. $$
(34)

Substituting (30)–(34) into (29), for all vhVh, we get

$$ \sum\limits_{j=0}^{N}|\widehat{(Pu-u)}_{j}[ v_{h} ]_{j}+[Pu-u]_{j}\{v_{h}^{\prime}\}_{j}| \lesssim \varepsilon^{-1/2}\left( N^{-1}\ln N \right)^{k}\|v_{h}\|{~}_{E}. $$

Hence,

$$ \begin{array}{@{}rcl@{}} \left|A_{h}(u-Pu, v_{h} )\right| &\lesssim&\sum\limits_{j=1}^{N/2}{\int}_{I_j}\left|(u-Pu)^{\prime} v_{h}^{\prime}\right| dx +\sum\limits_{j=N/2+1}^{N}{\int}_{I_j}\left|(u-Pu)^{\prime} v_{h}^{\prime}\right| dx\\ &\qquad& +\sum\limits_{j=0}^{N}\left|\widehat{(Pu-u)}_{j}[ v_{h} ]_{j}+[Pu-u]_{j}\{v_{h}^{\prime}\}_{j}\right|\\ &\lesssim& \varepsilon^{-1/2}\left( N^{-1}\ln N \right)^{k}\|v_{h}\|{~}_{E} \ \text{ for all }v_{h}\in V_{h}, \end{array} $$

where we applied a Cauchy-Schwarz inequality to the integral terms then invoked Lemma 6.

Next, by (4b), we have

$$ B_{h}(u-Pu, v_{h}) = \sum\limits_{j=1}^{N} {\int}_{I_j} b(x)(u-Pu)v_{h}^{\prime} dx+\sum\limits_{j=0}^{N} \widetilde{b(u-Pu)}_{j}[ v_{h} ]_{j} $$

for all vhVh. Here, a Cauchy-Schwarz inequality gives

$$ \begin{array}{@{}rcl@{}} && \left| \sum\limits_{j=1}^{N} {\int}_{I_j} b(x)(u-Pu)v_{h}^{\prime} dx \right| \\ &\lesssim &\left( \sum\limits_{j=1}^{N/2}\|u-Pu\|{~}^{2}_{0,I_{j}}\right)^{1/2} \left( \sum\limits_{j=1}^{N/2}| v_{h} |{~}^{2}_{1,I_{j}}\right)^{1/2}\\ &\qquad& +\left( \sum\limits_{j=N/2+1}^{N} H^{-2}\|u-Pu\|{~}^{2}_{0,I_{j}}\right)^{1/2} \left( \sum\limits_{j=N/2+1}^{N} H^{2}| v_{h} |{~}^{2}_{1,I_{j}}\right)^{1/2}\\ &\lesssim& \varepsilon^{1/2}(N^{-1}\ln N)^{k+1}\| v_{h} \|{~}_{E}+N^{-k}\|v_{h}\|{~}_{0}\ \text{ for all }v_{h}\in V_{h}, \end{array} $$
(35)

by Lemma 6 and the inverse inequality \(H^{2}| v_{h} |{~}^{2}_{1,I_{j}}\lesssim \|v_{h}\|{~}^{2}_{0,I_{j}}\) for j > N/2 (Lemma 10). The other term in Bh(uPu, vh) is bounded by

$$ \begin{array}{@{}rcl@{}} &&\sum\limits_{j=0}^{N}\left|\widetilde{b(u-Pu)}_{j}[ v_{h} ]_{j} \right|\\ &\lesssim& \left( \sum\limits_{j=1}^{N/2}h_{j}^{}\widetilde{(u-Pu)}_{j}^{2}\right)^{1/2}\left( \sum\limits_{j=1}^{N/2}\frac{\beta_{0}}{h_{j}}[v_{h}]^{2}_{j}\right)^{1/2}\\ &\qquad&+\left( \sum\limits_{j=N/2+1}^{N}h_{j}^{-1}\widetilde{(u-Pu)}_{j}^{2}\right)^{1/2}\left( \sum\limits_{j=N/2+1}^{N}h_{j}^{}[v_{h}]^{2}_{j}\right)^{1/2}\\ \end{array} $$
$$ \begin{array}{@{}rcl@{}} &\lesssim& \left( h\sum\limits_{j=1}^{N/2}\|Pu-u\|{~}^{2}_{0,\infty,I_{j}}+h\|Pu-u\|{~}^{2}_{0,\infty,I_{N/2+1}}\right)^{1/2}\|v_{h}\|{~}_{E}\\ &\qquad&+\left( H^{-1}\sum\limits_{j=N/2+1}^{N}\|Pu-u\|{~}^{2}_{0,\infty,I_{j}}\right)^{1/2}\|v_{h}\|{~}_{0}\\ &\lesssim& \left[\varepsilon (N^{-1}\ln N)^{2k+2}+\varepsilon N^{-2k-2}\ln N\right]^{1/2}\| v_{h} \|{~}_{E}+N^{-k}\|v_{h}\|{~}_{0}\\ &\lesssim& \varepsilon^{1/2}(N^{-1}\ln N)^{k+1}\| v_{h} \|{~}_{E}+N^{-k}\|v_{h}\|{~}_{0}\ \text{ for all } v_{h}\in V_{h}, \end{array} $$
(36)

where we used Lemma 7 and the triangle inequality of (28) to estimate the Puu terms, while \({\sum }_{N/2+1}^{N}h_{j}^{}[v_{h}]^{2}_{j} \lesssim \|v_{h}\|{~}_{0}^{2}\) follows from the inverse inequality of Lemma 10. Adding (35) and (36), one gets

$$ \left|B_{h}(u-Pu, v_{h} )\right| \lesssim \varepsilon^{1/2}(N^{-1}\ln N)^{k+1}\| v_{h} \|{~}_{E}+N^{-k}\|v_{h}\|{~}_{0}\ \text{ for all } v_{h}\in V_{h}. $$

Finally, Lemma 6 gives

$$ \begin{array}{@{}rcl@{}} \left|C_{h}(u-Pu, v_{h} )\right| &= &\left| \sum\limits_{j=1}^{N}{\int}_{I_j} c(x)(u-Pu)v_{h}dx \right| \lesssim \|u-Pu\|{~}_{0} \|v_{h}\|{~}_{0} \\ &\lesssim& \left[\varepsilon^{1/2}(N^{-1}\ln N)^{k+1}+N^{-k-1} \right]\| v_{h} \|{~}_{0}\ \text{ for all } v_{h}\in V_{h}. \end{array} $$

This completes the proof of Lemma 9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, G., Stynes, M. A direct discontinuous Galerkin finite element method for convection-dominated two-point boundary value problems. Numer Algor 83, 741–765 (2020). https://doi.org/10.1007/s11075-019-00701-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00701-1

Keywords

Navigation