Skip to main content
Log in

The performance of the N-body integrator SSS

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The integrator SSS performs accurate N-body simulations of the Solar System when there is a mix of massive bodies and test particles. The orbital motion of all bodies at all times is integrated using a 12-10 explicit Runge-Kutta Nyström (RKN) pair. The test particles are divided into sets and each set integrated on a different processor. The explicit RKN pair uses an order 12 interpolant for the position and velocity when checking for collisions. We report on two significant improvements to SSS. The first improvement reduced the local round-off error in interpolated values by approximately four orders of magnitude, permitting more accurate modelling of collisions. The technique used to reduce the round-off error can be applied to other high-order interpolants. The second improvement is hand optimization of the implementation of SSS. This optimization increased the speed of SSS by approximately 60%, permitting more accurate modelling through the use of more test particles. We also present a summary of the numerical performance of SSS on a simulation of the Sun, the planets Earth to Neptune, and 500,000 test particles over 100 million years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker, T., Dormand, J., Gilmore, J., Prince, P.: Continuous approximation with embedded Runge-Kutta methods. Appl. Numer. Math. 22 (1–3), 51 – 62 (1996). https://doi.org/10.1016/S0168-9274(96)00025-6. http://www.sciencedirect.com/science/article/pii/S0168927496000256. Special Issue Celebrating the Centenary of Runge-Kutta Methods

    Article  MathSciNet  MATH  Google Scholar 

  2. Batygin, K., Brown, M.E.: Early dynamical evolution of the solar system: pinning down the initial conditions of the Nice model. Astrop. J. 716, 1323–1331 (2010). https://doi.org/10.1088/0004-637X/716/2/1323

    Article  Google Scholar 

  3. Brasil, P.I.O., Nesvorný, D., Gomes, R.S.: Dynamical implantation of objects in the Kuiper Belt. Astron. J. 148, 56 (2014). https://doi.org/10.1088/0004-6256/148/3/56

    Article  Google Scholar 

  4. Chambers, J.E.: A hybrid symplectic integrator that permits close encounters between massive bodies. MNRAS 304, 793–799 (1999). https://doi.org/10.1046/j.1365-8711.1999.02379.x

    Article  Google Scholar 

  5. Dormand, J.R., El-Mikkaway, M.E.A., Prince, P.J.: High-order embedded Runge-Kutta-Nyström formuale. IMA J. Num. Anal. 7, 423–430 (1987)

    Article  MATH  Google Scholar 

  6. Duncan, M.J., Levison, H.F., Lee, M.H.: A multiple time step symplectic algorithm for integrating close encounters. Astron. J. 116, 2067–2077 (1998). https://doi.org/10.1086/300541

    Article  Google Scholar 

  7. Grazier, K.R., Castillo-Rogez, J.C., Horner, J.: It’s complicated: a big data approach to exploring planetesimal evolution in the presence of Jovian planets. Astron. J. 156, 232 (2018). https://doi.org/10.3847/1538-3881/aae095

    Article  Google Scholar 

  8. Grazier, K.R., Newman, W.I., Sharp, P.W.: A multirate Störmer algorithm for close encounters. Astron. J. 145(4), 112 (2013). http://stacks.iop.org/1538-3881/145/i=4/a=112

    Article  Google Scholar 

  9. Grimm, S.L., Stadel, J.G.: The GENGA code: gravitational encounters in n-body simulations with GPU acceleration. Astrop. J. 796, 23 (2014). https://doi.org/10.1088/0004-637X/796/1/23

    Article  Google Scholar 

  10. Hairer, E., Wanner, G.: A theory for Nyström methods. Numer. Math. 25(4), 383–400 (1975). https://doi.org/10.1007/BF01396335

    Article  MathSciNet  MATH  Google Scholar 

  11. Horner, J., Jones, B.: Jupiter – friend or foe? I: the asteroids. Int. J. Astrobiol. 7, 251–261 (2008). https://doi.org/10.1017/S1473550408004187. http://journals.cambridge.org/article_S1473550408004187

    Article  Google Scholar 

  12. Horner, J., Jones, B.: Jupiter – friend or foe? II: the centaurs. Int. J. Astrobiol. 8, 75–80 (2009). https://doi.org/10.1017/S1473550408004357. http://journals.cambridge.org/article_S1473550408004357

    Article  Google Scholar 

  13. Horner, J., Jones, B., Chambers, J.: Jupiter – friend or foe? III: the Oort cloud comets. Int. J. Astrobiol. 9, 1–10 (2010). https://doi.org/10.1017/S1473550409990346. http://journals.cambridge.org/article_S1473550409990346

    Article  Google Scholar 

  14. Horner, J., Jones, B.W.: Jupiter - friend or foe? IV: the influence of orbital eccentricity and inclination. Int. J. Astrobiol. 11, 147–156 (2012). https://doi.org/10.1017/S1473550412000043

    Article  Google Scholar 

  15. Izidoro, A., Raymond, S.N., Morbidelli, A., Winter, O.C.: Terrestrial planet formation constrained by Mars and the structure of the asteroid belt. Mon. Not. Roy. Ast. Soc. 453, 3619–3634 (2015). https://doi.org/10.1093/mnras/stv1835

    Article  Google Scholar 

  16. Kaufmann, D.: Swifter, http://www.boulder.swri.edu/swifter/ (2005)

  17. Levison, H.F., Duncan, M.J.: Symplectically integrating close encounters with the Sun. Astron. J. 120, 2117–2123 (2000). https://doi.org/10.1086/301553

    Article  Google Scholar 

  18. Levison, H.F., Morbidelli, A., Tsiganis, K., Nesvorný, D., Gomes, R.: Late orbital instabilities in the outer planets induced by interaction with a self-gravitating planetesimal disk. Astron. J. 142(5), 152 (2011). http://stacks.iop.org/1538-3881/142/i=5/a=152

    Article  Google Scholar 

  19. Minton, D.A., Malhotra, R.: Dynamical erosion of the asteroid belt and implications for large impacts in the inner solar system. Icarus 207(2), 744–757 (2010). https://doi.org/10.1016/j.icarus.2009.12.008. http://www.sciencedirect.com/science/article/pii/S0019103509004953

    Article  Google Scholar 

  20. Moore, A., Quillen, A.: QYMSYM: a GPU-accelerated hybrid symplectic integrator that permits close encounters. New Astron. 16(7), 445–455 (2011). https://doi.org/10.1016/j.newast.2011.03.009. http://www.sciencedirect.com/science/article/pii/S1384107611000303

    Article  Google Scholar 

  21. Nesvorný, D., Vokrouhlický, D., Morbidelli, A.: Capture of Trojans by jumping Jupiter. Astrophys. J. 768, 45 (2013). https://doi.org/10.1088/0004-637X/768/1/45

    Article  Google Scholar 

  22. Raymond, S.N., Armitage, P.J., Moro-Martín, A., Booth, M., Wyatt, M.C., Armstrong, J.C., Mandell, A.M., Selsis, F., West, A.A.: Debris disks as signposts of terrestrial planet formation. II. Dependence of exoplanet architectures on giant planet and disk properties. A & A 541, A11 (2012). https://doi.org/10.1051/0004-6361/201117049

    Article  Google Scholar 

  23. Roy, A.: Orbital Motion, 3rd edn. Taylor & Francis, New York (1988). https://books.google.co.nz/books?id=yLGqnQAACAAJ

    MATH  Google Scholar 

  24. Sharp, P.W.: N-body simulations: the performance of some integrators. ACM Trans. Math. Softw. 32, 375–395 (2006). https://doi.org/10.1145/1163641.1163642

    Article  MathSciNet  MATH  Google Scholar 

  25. Sharp, P.W., Newman, W.I.: A multirate variable-timestep algorithm for n-body solar system simulations with collisions. Astron. J. 151(3), 64 (2016). http://stacks.iop.org/1538-3881/151/i=3/a= 64

    Article  Google Scholar 

  26. Tsitouras, C.: A tenth order symplectic Runge-Kutta-Nyström method. Celestial Mech. Dyn. Astron. 74, 223–230 (1999). https://doi.org/10.1023/A:1008346516048

    Article  MATH  Google Scholar 

  27. Wang, J.H., Brasser, R.: An Oort cloud origin of the Halley-type comets. Astron. Astrop. 563, A122 (2014). https://doi.org/10.1051/0004-6361/201322508

    Article  Google Scholar 

  28. Wu, X., Wang, B.: Recent Developments in Structure-Preserving Algorithms for Oscillatory Differential Equations. https://doi.org/10.1007/978-981-10-9004-2 (2018)

  29. Wu, X., Wang, B., Liu, K., Zhao, H.: ERKN methods for long-term integration of multidimensional orbital problems. Appl. Math. Model. 37, 2327–2336 (2013). https://doi.org/10.1016/j.apm.2012.05.021

    Article  MathSciNet  MATH  Google Scholar 

  30. Wu, X., You, X., Shi, W., Wang, B.: ERKN integrators for systems of oscillatory second-order differential equations. Comput. Phys. Commun. 181, 1873–1887 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wu, X., You, X., Wang, B.: Structure-Preserving Algorithms for Oscillatory Differential Equations. Springer Publishing Company, Incorporated (2015)

Download references

Acknowledgements

The author thanks the two referees for their careful reading of the paper and their suggestions on how to improve it. The author acknowledges the contribution of the NeSI high-performance computing facilities and the staff at the Centre for eResearch at the University of Auckland. New Zealand’s national facilities are provided by the New Zealand eScience Infrastructure (NeSI) and funded jointly by NeSI’s collaborator institutions and through the Ministry of Business, Innovation and Employment’s Infrastructure programme. http://www.nesi.org.nz. The author also acknowledges the use of the computational servers in the Department of Mathematics at the University of Auckland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. W. Sharp.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharp, P.W. The performance of the N-body integrator SSS. Numer Algor 81, 1459–1472 (2019). https://doi.org/10.1007/s11075-019-00674-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00674-1

Keywords

Navigation