Skip to main content
Log in

Transformed implicit-explicit DIMSIMs with strong stability preserving explicit part

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

For many systems of differential equations modeling problems in science and engineering, there are often natural splittings of the right hand side into two parts, one of which is non-stiff or mildly stiff, and the other part is stiff. Such systems can be efficiently treated by a class of implicit-explicit (IMEX) diagonally implicit multistage integration methods (DIMSIMs), where the stiff part is integrated by an implicit formula, and the non-stiff part is integrated by an explicit formula. We will construct methods where the explicit part has strong stability preserving (SSP) property, and the implicit part of the method is A-, or L-stable. We will also investigate stability of these methods when the implicit and explicit parts interact with each other. To be more precise, we will monitor the size of the region of absolute stability of the IMEX scheme, assuming that the implicit part of the method is A-, or L-stable. Finally, we furnish examples of SSP IMEX DIMSIMs up to the order four with good stability properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Braś, M., Cardone, A., Jackiewicz, Z., Pierzchaa, P.: Error propagation for implicit-explicit general linear methods. Appl. Numer. Math. 131, 207–231 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Braś, M., Izzo, G., Jackiewicz, Z.: Accurate Implicit-Explicit general linear methods with inherent Runge-Kutta stability. J. Sci. Comput. 70, 1105–1143 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Butcher, J.C.: Diagonally-implicit multi-stage integration methods. Appl. Numer. Math. 11, 347–363 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, Chichester (2003)

    Book  MATH  Google Scholar 

  5. Califano, G., Izzo, G., Jackiewicz, Z.: Starting procedures for general linear methods. Appl. Numer. Math. 120, 165–175 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Califano, G., Izzo, G., Jackiewicz, Z.: Strong stability preserving general linear methods with Runge-Kutta stability. J. Sci. Comput. 76(2), 943–968 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cardone, A., Jackiewicz, Z., Sandu, A., Zhang, H.: Extrapolation-based implicit-explicit general linear methods. Numer. Algorithm. 65, 377–399 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cardone, A., Jackiewicz, Z., Sandu, A., Zhang, H.: Construction of highly stable implicit-explicit general linear methods, Discrete Contin. Dyn. Syst Dynamical systems, Differential Equations and Applications, 10th AIMS Conference Suppl., pp. 185–194 (2015)

  9. Constantinescu, E.M., Sandu, A.: Optimal strong-stability-preserving general linear methods. SIAM J. Sci. Comput. 32, 3130–3150 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gottlieb, S., Ketcheson, D., Shu, C.-W.: Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations, World Scientific. New Jersey, London (2011)

    Book  MATH  Google Scholar 

  11. Hindmarsh, A.C.: ODEPACK, A systematized collection of ODE solvers. In: Stepleman, R.S., et al. (eds.) Scientific Computing. (vol. 1 of IMACS Transactions on Scientific Computation), pp. 55–64. Amsterdam, North-Holland (1983)

  12. Hundsdorfer, W., Ruuth, S.J.: IMEX Extensions of linear multistep methods with general monotonicity and boundedness properties. J. Comput. Phys. 225, 2016–2042 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hundsdorfer, W., Verwer, J.G.: Numerical solution of Time-Dependent Advection-Diffusion-Reaction equations. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  14. Izzo, G., Jackiewicz, Z.: Highly stable implicit-explicit Runge-Kutta methods. Appl. Numer. Math. 113, 71–92 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Izzo, G., Jackiewicz, Z.: Strong stability preserving general linear methods. J. Sci. Comput. 65, 271–298 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Izzo, G, Jackiewicz, Z: Strong stability preserving transformed DIMSIMs. J. Comput. Appl. Math. 343, 174–188 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Izzo, G., Jackiewicz, Z.: Strong stability preserving transformed implicit-explicit DIMSIMs, arXiv:1806.07804

  18. Jackiewicz, Z.: General Linear Methods for Ordinary Differential Equations. Wiley, Hoboken (2009)

    Book  MATH  Google Scholar 

  19. Jin, S.: Runge-kutta methods for hyperbolic systems with stiff relaxation terms. J. Comput. Phys. 122, 51–67 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ketcheson, D.I., Gottlieb, S., Macdonald, C.B.: Strong stability preserving two-step Runge-Kutta methods. SIAM J. Numer. Anal. 49, 2618–2639 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pareschi, L., Russo, G.: Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25, 129–155 (2005)

    MathSciNet  MATH  Google Scholar 

  22. Schnakenberg, J.: Simple chemical reaction systems with limiting cycle behaviour. J. Theor. Biol. 81, 389–400 (1979)

    Article  MathSciNet  Google Scholar 

  23. Schur, J.: Uber Potenzreihen die im Innern des Einheitskreises beschrankt sind. J . Reine Angew. Math. 147, 205–232 (1916)

    MATH  Google Scholar 

  24. Shu, C.-W.: High order ENO and WENO schemes for computational fluid dynamics. In: Barth, T.J., Deconinck, H. (eds.) High-Order Methods for Computational Physics, Lecture Notes in Computational Science and Engineering, vol. 9, pp. 439–582. Springer (1999)

  25. Spijker, M.N.: Stepsize conditions for general monotonicity in numerical initial value problems. SIAM J. Numer. Anal. 45, 1226–1245 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, R., Spiteri, R.J.: Linear instability of the fifth-order WENO method. SIAM J. Numer. Anal. 45, 1871–1901 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, H., Sandu, A., Blaise, S.: Partitioned and implicit-explicit general linear methods for ordinary differential equations. J. Sci. Comput. 61, 119–144 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Izzo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Members of the INdAM Research group GNCS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izzo, G., Jackiewicz, Z. Transformed implicit-explicit DIMSIMs with strong stability preserving explicit part. Numer Algor 81, 1343–1359 (2019). https://doi.org/10.1007/s11075-018-0647-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-018-0647-3

Keywords

Navigation