Skip to main content

Advertisement

Log in

An iterative algorithm for solving split equality fixed point problems for a class of nonexpansive-type mappings in Banach spaces

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, an iterative algorithm that approximates solutions of split equality fixed point problems (SEFPP) for quasi-ϕ-nonexpansive mappings is constructed. Weak convergence of the sequence generated by this algorithm is established in certain real Banach spaces. The theorem proved is applied to solve split equality problem, split equality variational inclusion problem, and split equality equilibrium problem. Finally, some numerical examples are given to demonstrate the convergence of the algorithm. The theorems proved improve and complement a host of important recent results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moudafi, A.: Alternating CQ-algorithm for convex feasibility and split fixed-point problems. J. Nonlinear Convex Anal. 15(4), 809–818 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Censor, Y., Segal, A.: The split common fixed point problem for directed operators. J. Conv. Anal. 16, 587–600 (2009)

    MathSciNet  MATH  Google Scholar 

  3. Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: A unified approach for inversion problems in intensity-modulated radiation therapy. Phys. Med. and Biol. 51, 2353–2365 (2006)

    Article  Google Scholar 

  4. Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithms 59, 301–323 (2012)

    Article  MathSciNet  Google Scholar 

  5. Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Alternating proximal algorithms for weakly coupled minimization problems. Applications to dynamical games and PDEs. J. Conv. Anal. 15, 485–506 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Prob. 20, 103–120 (2004)

    Article  MathSciNet  Google Scholar 

  7. Byrne, C: Iterative oblique projection onto convex subsets and the split feasibility problem. Inverse Prob. 18, 441–453 (2002)

    Article  Google Scholar 

  8. Xu, H.K.: Inequalities in Banach spaces with applications. Nonlinear Anal 16 (12), 1127–1138 (1991)

    Article  MathSciNet  Google Scholar 

  9. Zhao, J., Zong, H., Liu, G., Zhang, H.: Solving variational inequality and split equality common fixed-point problem without prior knowledge of operator norms. J. Nonlinear Sci. Appl. 9, 5428–5440 (2016)

    Article  MathSciNet  Google Scholar 

  10. Giang, D.M., Strodiot, J.J., Nguyen, V.H.: Strong convergence of an iterative method for solving the multiple-set split equality fixed point problem in a real Hilbert space. RACSAM, https://doi.org/10.1007/s13398-016-0338-7

    Article  MathSciNet  Google Scholar 

  11. Chang, S.S., Wang, L., Qin, L., Ma, Z.: On a class of split equality fixed point problems in Hilbert spaces. J. Nonlinear Var. Anal. 1(2), 201–212 (2017)

    Google Scholar 

  12. Zhao, J.: Solving split equality fixed-point problem of quasi-nonexpansive mappingpings without prior knowledge of operators norms. Optimization. A Journal of Mathematical Programming and Operations Research. https://doi.org/10.1080/02331934.2014.883515 (2014)

    Article  MathSciNet  Google Scholar 

  13. Zhao, J., He, S.: Solving the general split common fixed-point problem of quasi-nonexpansive mappingpings without prior knowledge of operator norms. Filomat 31(3), 559–573 (2017). https://doi.org/10.2298/FIL1703559Z

    Article  MathSciNet  Google Scholar 

  14. Zhao, Y., Shi, L.: Strong convergence of an extragradient-type algorithm for the multiple-sets split equality problem. J. Ineq. Appl. 2017, 52 (2017)

    Article  MathSciNet  Google Scholar 

  15. Shehu, Y., Ogbuisi, F.U., Iyiola, O.S.: Strong convergence theorem for solving split equality fixed point problem which does not involve the prior knowledge of operator norms. Bull. Iranian Math. Soc. 43(2), 349–371 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Wu, Y., Chen, R., Shi, L.Y.: Split equality problem and multiple-sets split equality problem for quasi-nonexpansive multi-valued mappingpings. J. Ineq. Appl. 2014, 428 (2014)

    Article  Google Scholar 

  17. Wang, F.: On the convergence of CQ algorithm with variable steps for the split equality problem. Numer. Algor., https://doi.org/10.1007/s11075-016-0177-9

    Article  MathSciNet  Google Scholar 

  18. Chang, S.S., Agarwal, R.P.: Strong convergence theorems of general split equality problems for quasi-nonexpansive mappingpings. J. Ineq. Appl. 2014, 367 (2014)

    Article  Google Scholar 

  19. Zhao, J., Wang, S.: Viscosity approximation methods for the split equality common fixed point problem of quasi-nonexpansive operators. Acta Math. Sci. 36B (5), 1474–1486 (2016)

    Article  MathSciNet  Google Scholar 

  20. Ugwunnadi, G.C.: Iterative algorithm for the split equality problem in Hilbert spaces. J. Appl. Anal. 2016, https://doi.org/10.1515/jaa-2016-0008

  21. Chidume, C.E., Ndambomve, P., Bello, A.U.: The split equality fixed point problem for demi-contractive mappingpings. J. Non. Ana. Optim 6(1), 61–69 (2015)

    MATH  Google Scholar 

  22. Chang, S.S., Wang, L., Qin, L., Ma, Z.: Strongly convergent iterative methods for split equality variational inclusion problems in Banach spaces. Acta Math. Sci. 36B(6), 1641–1650 (2016)

    Article  MathSciNet  Google Scholar 

  23. Cioranescu, I.: Geometry of Banach Spaces, Duality Mapping and Nonlinear Problems. Kluwer Academic, Netherlands (1990)

    Book  Google Scholar 

  24. Zhang, S.S.: Generalized mixed equilibrium problem in Banach spaces. Appl. Math. Mech. 30(9), 1105–1112 (2009)

    Article  MathSciNet  Google Scholar 

  25. Wei, L., Zhou, H.Y.: The new iterative scheme with errors of zero point for maximal operator in Banach space. Math. Appl. 19(1), 101–105 (2006). (in Chinese)

    MathSciNet  MATH  Google Scholar 

  26. Alber, Ya.: Metric and generalized projection operators in Banach spaces: properties and applications. In: Kartsatos, A.G. (ed.) Theory and applications of nonlinear operators of accretive and monotone type. Marcel Dekker, New York, pp. 15–50 (1996)

  27. Alber, Ya., Ryazantseva, I.: Nonlinear Ill Posed Problems of Monotone Type. Springer, London (2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Romanus.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research supported from AfDB Research Grant Fund to AUST.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chidume, C.E., Romanus, O.M. & Nnyaba, U.V. An iterative algorithm for solving split equality fixed point problems for a class of nonexpansive-type mappings in Banach spaces. Numer Algor 82, 987–1007 (2019). https://doi.org/10.1007/s11075-018-0638-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-018-0638-4

Keywords

Navigation