Skip to main content
Log in

A spectral algorithm for large-scale systems of nonlinear monotone equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

A derivative-free iterative scheme that uses the residual vector as search direction for solving large-scale systems of nonlinear monotone equations is presented. It is closely related to two recently proposed spectral residual methods for nonlinear systems which use a nonmonotone line-search globalization strategy and a step-size based on the Barzilai-Borwein choice. The global convergence analysis is presented. In order to study the numerical behavior of the algorithm, it is included an extensive series of numerical experiments. Our computational experiments show that the new algorithm is computationally efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahookhosh, M., Amini, K., Bahrami, S.: Two derivative-free projection approaches for systems of large-scale nonlinear monotone equations. Numer. Algor. 64, 21–42 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barzilai, J., Borwein, J.: Two point step gradient methods. IMA J. Numer. Anal. 8, 141–148 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bing, Y., Lin, G.: An efficient implementation of Merrill’s method for sparse or partially separable systems of nonlinear equations. SIAM J. Optim. 2, 206–221 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dai, Y.H., Liao, L.Z.: R-linear convergence of the Barzilai and Borwein gradient method. IMA J. Numer. Anal. 22, 1–10 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dennis, J.E., Moré, J.J.: A characterization of superlinear convergence and its applications to quasi-Newton methods. Math. Comput. 28, 549–560 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cheng, W.: A PRP type method for systems of monotone equations. Math. Comput. Model. 50, 15–20 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fletcher, R.: On the Barzilai-Borwein Method. In: Qi, L., Teo, K.L., Yang, X.Q. (eds.) Optimization and Control with Applications, pp 235–256. Springer (2005)

  8. Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newtons method. SIAM J. Numer. Anal. 23, 707–716 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. La Cruz, W., Martínez, J.M., Raydan, M.: Spectral residual method without gradient information for solving large-scale nonlinear systems of equations. Math. Comput. 75, 1429–1448 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. La Cruz, W., Raydan, M.: Nonmonotone spectral methods for large-scale nonlinear systems. Optim. Methods and Softw. 18, 583–599 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, M.: An Liu-Storey-Type method for solving large-scale nonlinear monotone equations. Numer. Funct. Anal. Optim. 35, 310–322 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, Q.N., Li, D.H.: A class of derivative-free methods for large-scale nonlinear monotone equations. IMA J. Numer. Anal. 31, 1625–1635 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Meyer, G.H.: The Numerical Solution of Quasilinear Elliptic Equations. In: Byrne, G., Hall, C.A. (eds.) Numerical Solution of Systems of Nonlinear Algebraic Equations, p 2761. Academic Press, New York (1973)

  14. Ortega, J., Rheinboldt, W.: Iterative solution of nonlinear equations in several variables. SIAM Philadelphia (2000)

  15. Papp, Z., Rapajić, S.: FR Type methods for systems of large-scale nonlinear monotone equations. Appl. Math. Comput. 269, 816–823 (2015)

  16. Rappaz, J.: Approximation of a nondifferentiable nonlinear problem related to MHD equilibria. Numer. Math. 45, 117–133 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  17. Raydan, M.: On the Barzilai and Borwein choice of the steplength for the gradient method. IMA J. Numer. Anal. 13, 321–326 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Solodov, M.V., Svaiter, B.F.: A globally convergent inexact Newton method for systems of monotone equations. In: Fukushima, M., Qim, L. (eds.) Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, pp 355–369. Kluwer Academic Publishers (1990)

  19. Wang, C.W., Wang, Y.J., Xu, C.L.: A projection method for a system of nonlinear monotone equations with convex constraints. Math. Meth. Oper. Res. 66, 33–46 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yan, Q.R., Peng, X.Z., Li, D.H.: A globally convergent derivative-free method for solving large-scale nonlinear monotone equations. J. Comput. Appl. Math. 234, 649–657 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yu, G.H., Niu, S.Z., Ma, J.H.: Multivariate spectral gradient projection method for nonlinear monotone equations with convex constraints. J. Ind. Manag. Optim. 9, 117–129 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang, L., Zhou, W.J.: Spectral gradient projection method for solving nonlinear monotone equations. J. Comput. Appl. Math. 196, 478–484 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhou, W.J., Li, D.H.: A globally convergent BFGS method for nonlinear monotone equations without any merit functions. Math. Comput. 77, 2231–2240 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhou, W.J., Li, D.H.: Limited memory BFGS method for nonlinear monotone equations. J. Comput. Math. 25, 89–96 (2007)

    MathSciNet  Google Scholar 

  25. Zhou, W.J., Toh, K.C.: Superlinear convergence of a Newton-type algorithm for monotone equations. J. Optim. Theory Appl. 125, 205–221 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to two anonymous referees for many suggestions which greatly improved the quality and presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William La Cruz.

Additional information

The work was supported by CDCH-UCV project PG-08-8628-2013/2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz, W.L. A spectral algorithm for large-scale systems of nonlinear monotone equations. Numer Algor 76, 1109–1130 (2017). https://doi.org/10.1007/s11075-017-0299-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0299-8

Keywords

Navigation