Skip to main content
Log in

Dynamical behavior of lump, breather and soliton solutions of time-fractional (3+1)D-YTSF equation with variable coefficients

  • Research
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The objective of this article is to investigate soliton, breather and lump solutions for the fractional (3+1)D–Yu–Toda–Sasa–Fukuyama (YTSF) equation with time-dependent variable coefficients, which is concerned with interfacial waves in a dual-layer liquid or elastic quasi-plane waves within a lattice. In particular case, YTSF equation reduces to the Kadomtsev–Petviashvili equation, which describes the long wave with small amplitude and slow dependence on the transverse coordinate in a single-layer shallow fluid or surface wave and the internal wave in the strait or channel of varying depth and width. Also, the YTSF equation reduces to Calogero–Bogoyavlenskii–Schiff equation, which describes the \((2+1)\)-dimensional interaction between a Riemann wave propagating along the z-axis and a long wave propagating along the x-axis. For the first time, the Hirota bilinear method is utilized in the context of a fractional differential equation with varying coefficients. To provide a detailed insight into the dynamic behavior of the wave profile, we explore various types of complex solutions such as multi-solitons, lump, and breather solutions. Using the multi-soliton solutions as a foundation, we derive breather wave, lump and hybrid solutions. Graphical discussion is conducted to explore the impact of time-dependent coefficients and fractional derivative on the solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availibility

Not Applicable

Code Availability

Not Applicable

References

  1. Newell, A.C.: Solitons in Mathematics and Physics, vol. 48. SIAM, Philadalphia (1985)

    Google Scholar 

  2. Ullah, M.S.: Interaction solution to the (3+ 1)D negative-order KdV first structure. Partial Differ. Equ. Appl. Math. 8, 100566 (2023)

    Google Scholar 

  3. Russell, J.S.: Report on Waves: Made to the meetings of the british association in 1842-43 (Richard and John E. Taylor, London, 1845)

  4. Korteweg, D.J., De Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. London Edinb. Dublin Philos. Mag. J. Sci. 39(240), 422 (1895)

    MathSciNet  Google Scholar 

  5. Ullah, M.S., Mostafa, M., Ali, M.Z., Roshid, H.O., Akter, M.: Soliton solutions for the Zoomeron model applying three analytical techniques. PLoS ONE 18(7), e0283594 (2023)

    Google Scholar 

  6. Ullah, M.S., Roshid, H.O., Ali, M.Z.: New wave behaviors of the Fokas-Lenells model using three integration techniques. PLoS ONE 18(9), 0291071 (2023)

    Google Scholar 

  7. Ullah, M.S., Roshid, H.O., Ali, M.Z.: New wave behaviors and stability analysis for the (2+ 1)-dimensional Zoomeron model. Opt. Quant. Electron. 56(2), 240 (2024)

    Google Scholar 

  8. Ullah, M.S., Ahmed, O., Mahbub, M.A.: Collision phenomena between lump and kink wave solutions to a (3+ 1)-dimensional Jimbo-Miwa-like model. Partial Differ. Equ. Appl. Math. 5, 100324 (2022)

    Google Scholar 

  9. Ullah, M.S., Baleanu, D., Ali, M.Z., et al.: Novel dynamics of the Zoomeron model via different analytical methods. Chaos, Solitons Fractals 174, 113856 (2023)

    MathSciNet  Google Scholar 

  10. Podlubny, I.: Fractional Differential Equations, vol. 198. Elsevier, New York (1998)

    Google Scholar 

  11. Liouville, J.: Mémoire sur l’intégration de l’équation \(mx^2+ n x+ p \frac{d^2 y}{dx^2}+ q x+ r \frac{dy}{dx}+ s y= 0\) á láide des différentielles á indices quelconques. J. lÉcole Roy. Polytéchn 13, 163 (1832)

    Google Scholar 

  12. Riemann, B.: Versuch einer allgemeinen auffassung der integration und differentiation. Gesammelte Werke 62, 331 (1876)

    Google Scholar 

  13. Kilbas, A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier, Amsterdam (2006)

    Google Scholar 

  14. Ross, B.: Fractional Calculus and its Applications, vol. 457. Springer, West Haven (1974)

    Google Scholar 

  15. Samko, S.G., Kilbas, A.A., Marichev, O.I., et al.: Fractional Integrals and Derivatives, vol. 1. Gordon and Breach Science Publishers, Switzerland (1993)

    Google Scholar 

  16. Hashemi, M.S., Haji-Badali, A., Alizadeh, F.: Non-classical Lie symmetry and conservation laws of the nonlinear time-fractional Kundu-Eckhaus (KE) equation. Pramana J. Phys. 95(3), 107 (2021)

    Google Scholar 

  17. Kumar, M., Gupta, R.K.: Coupled Higgs equation: Novel solution via GSSE method, bifurcation and chaotic patterns and series solution via symmetry. Qual. Theory Dyn. Syst. 23(1), 31 (2024)

    MathSciNet  Google Scholar 

  18. Sajid, N., Akram, G.: Optical solitons with full nonlinearity for the conformable space-time fractional Fokas-Lenells equation. Optik 196, 163131 (2019)

    Google Scholar 

  19. Kumar, M., Gupta, R.K.: Group classification and exact solutions of fractional differential equation with quintic non-Kerr nonlinearity term. Opt. Quant. Electron. 55(6), 492 (2023)

    Google Scholar 

  20. Kumar, M., Gupta, R.K.: A new generalized approach for soliton solutions and generalized symmetries of time-fractional partial differential equation. Int. J. Appl. Comput. Math. 8(4), 200 (2022)

    MathSciNet  Google Scholar 

  21. Li, C., Chen, L., Li, G.: Optical solitons of space-time fractional Sasa-Satsuma equation by F-expansion method. Optik 224, 165527 (2020)

    Google Scholar 

  22. Hosseini, K., Bekir, A., Ansari, R.: New exact solutions of the conformable time-fractional Cahn-Allen and Cahn-Hilliard equations using the modified Kudryashov method. Optik 132, 203 (2017)

    Google Scholar 

  23. Gupta, A., Ray, S.S.: On the solitary wave solution of fractional Kudryashov-Sinelshchikov equation describing nonlinear wave processes in a liquid containing gas bubbles. Appl. Math. Comput. 298, 1 (2017)

    MathSciNet  Google Scholar 

  24. Yaşar, E., Yıldırım, Y., Yaşar, E.: New optical solitons of space-time conformable fractional perturbed Gerdjikov-Ivanov equation by sine-Gordon equation method. Results Phys. 9, 1666 (2018)

    Google Scholar 

  25. Duran, S., Yokuş, A., Durur, H.: Surface wave behavior and refraction simulation on the ocean for the fractional Ostrovsky-Benjamin-Bona-Mahony equation. Mod. Phys. Lett. B 35(31), 2150477 (2021)

    MathSciNet  Google Scholar 

  26. Alam, B.E., Javid, A.: Optical dual-waves to a new dual-mode extension of a third order dispersive nonlinear Schrödinger’s equation. Phys. Lett. A 480, 128954 (2023)

    Google Scholar 

  27. Akram, S., Ahmad, J., Rehman, S.U., Younas, T.: Stability analysis and dispersive optical solitons of fractional Schrödinger-Hirota equation. Opt. Quant. Electron. 55(8), 664 (2023)

    Google Scholar 

  28. Li, Z.: Bifurcation and traveling wave solution to fractional Biswas-Arshed equation with the beta time derivative. Chaos, Solitons & Fractals 160, 112249 (2022)

    MathSciNet  Google Scholar 

  29. Sahoo, S., Saha Ray, S.: Invariant analysis with conservation law of time fractional coupled Ablowitz-Kaup-Newell-Segur equations in water waves. Waves in Random and Complex Media 30(3), 530 (2020)

    MathSciNet  Google Scholar 

  30. Gao, X., Faridi, W.A., Asjad, M.I., Jhangeer, A., Aleem, M., Alam, M.M.: A comparative analysis report on the multi-wave fractional Hirota equation in nonlinear dispersive media. Fractals 30(08), 2240226 (2022)

    Google Scholar 

  31. Kumar, D., Paul, G.C., Biswas, T., Seadawy, A.R., Baowali, R., Kamal, M., Rezazadeh, H.: Optical solutions to the Kundu-Mukherjee-Naskar equation: Mathematical and graphical analysis with oblique wave propagation. Phys. Scr. 96(2), 025218 (2020)

    Google Scholar 

  32. Liu, F.Y., Gao, Y.T., Yu, X.: Rogue-wave, rational and semi-rational solutions for a generalized (3+ 1)-dimensional Yu-Toda-Sasa-Fukuyama equation in a two-layer fluid. Nonlinear Dyn. 111(4), 3713 (2023)

    Google Scholar 

  33. Guo, H.D., Xia, T.C., Hu, B.B.: Dynamics of abundant solutions to the (3+ 1)-dimensional generalized Yu-Toda-Sasa-Fukuyama equation. Appl. Math. Lett. 105, 106301 (2020)

    MathSciNet  Google Scholar 

  34. Sahoo, S., Ray, S.S.: Lie symmetry analysis and exact solutions of (3+ 1)-dimensional Yu-Toda-Sasa-Fukuyama equation in mathematical physics. Comput. Math. Appl 73(2), 253 (2017)

    MathSciNet  Google Scholar 

  35. Deng, G.F., Gao, Y.T., Su, J.J., Ding, C.C.: Multi-breather wave solutions for a generalized (3+ 1)-dimensional Yu-Toda-Sasa-Fukuyama equation in a two-layer liquid. Appl. Math. Lett. 98, 177 (2019)

    MathSciNet  Google Scholar 

  36. Yin, H.M., Tian, B., Chai, J., Wu, X.Y., Sun, W.R.: Solitons and bilinear Bäcklund transformations for a (3+ 1)-dimensional Yu-Toda-Sasa-Fukuyama equation in a liquid or lattice. Appl. Math. Lett. 58, 178 (2016)

    MathSciNet  Google Scholar 

  37. Hadac, M., Herr, S., Koch, H.: Well-posedness and scattering for the KP-II equation in a critical space. Annales de l’Institut Henri Poincaré C, Analyse non linéaire 26(3), 917 (2009)

    MathSciNet  Google Scholar 

  38. Lan, Z.Z., Gao, Y.T., Yang, J.W., Su, C.Q., Wang, Q.M.: Solitons, Bäcklund transformation and Lax pair for a (2+ 1)-dimensional B-type Kadomtsev-Petviashvili equation in the fluid/plasma mechanics. Mod. Phys. Lett. B 30(25), 1650265 (2016)

    Google Scholar 

  39. Xue, L., Gao, Y.T., Zuo, D.W., Sun, Y.H., Yu, X.: Multi-soliton solutions and interaction for a generalized variable-coefficient Calogero-Bogoyavlenskii-Schiff equation. Zeitschrift für Naturforschung A 69(5–6), 239 (2014)

    Google Scholar 

  40. Bruzon, M., Gandarias, M., Muriel, C., Ramirez, J., Saez, S., Romero, F.: The Calogero-Bogoyavlenskii-Schiff equation in (2+ 1) dimensions. Theor. Math. Phys. 137, 1367 (2003)

    MathSciNet  Google Scholar 

  41. Satsuma, J., Ablowitz, M.: Two-dimensional lumps in nonlinear dispersive systems. J. Math. Phys. 20(7), 1496 (1979)

    MathSciNet  Google Scholar 

  42. He, J.H., Elagan, S., Li, Z.: Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus. Phys. Lett. A 376(4), 257 (2012)

    MathSciNet  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

To achieve the final version of the manuscript, all authors engaged equally.

Corresponding author

Correspondence to Manish Kumar.

Ethics declarations

Conflicts of interest

The authors have no Conflict of interest.

Ethics approval

Not Applicable

Consent to participate

Not Applicable

Consent for publication

Not Applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, R.K., Kumar, M. Dynamical behavior of lump, breather and soliton solutions of time-fractional (3+1)D-YTSF equation with variable coefficients. Nonlinear Dyn 112, 8527–8538 (2024). https://doi.org/10.1007/s11071-024-09531-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09531-w

Keywords

Mathematics Subject Classification

Navigation