Skip to main content
Log in

Effects of climate change on vegetation pattern in Baotou, China

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The vegetation system in arid and semi-arid regions is facing severe challenges, so it is urgent to forecast the evolution of vegetation system. Vegetation pattern dynamics can be used to qualitatively analyze and quantitatively describe the formation mechanism and distribution law of vegetation based on dynamic equations and statistical data. Therefore, this paper selects Baotou region, Inner Mongolia which is a typical semi-arid region and applies vegetation-climate dynamics model to study the effect of climate change on vegetation distribution. The last 60 years of carbon dioxide concentration [CO\(_2\)], rainfall and temperature data in this region are collected and the correlation between these climatic factors and vegetation density is analyzed. Besides, vegetation growth over the next 100 years is predicted under different climate scenarios. The results reveal that precipitation makes a critical difference in the growth of vegetation, and the vegetation pattern is the result of the synergistic effect of temperature, precipitation and [CO\(_2\)]. The rate of vegetation desertification is the fastest under current scenario and SSP1-2.6 is the most ideal climate scenario for vegetation growth. Furthermore, we use the optimal control theory to provide a theoretical guidance for the prevention of desertification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Daily rainfall and temperature data 1960–2019 is from China Meteorological Data Service Center (http://data.cma.cn/). Daily carbon dioxide concentration data is from Global Monitoring Laboratory (http://www.esrl.noaa.gov/gmd/ccgg/trends/). The future climate scenarios data comes from CMIP6 (https://esgfnode.llnl.gov/projects/cmip6/). NDVI data 2000–2020 is from National Ecosystem Science Data Center (http://www.nesdc.org.cn/).

References

  1. Wu, Z., Huang, N., Wallace, J., Smoliak, B., Chen, X.: On the time-varying trend in global-mean surface temperature. Clim. Dyn. 37, 759–773 (2011)

    Google Scholar 

  2. Zhao, T., Chen, L., Ma, Z.: Simulation of historical and projected climate change in arid and semiarid areas by CMIP5 models. Chin. Sci. Bull. 59(4), 412–429 (2014)

    Google Scholar 

  3. Huang, J.P., Guan, X.D., Ji, F.: Enhanced cold-season warming in semi-arid regions. Atmos. Chem. Phys. 12(12), 5391–5398 (2012)

    Google Scholar 

  4. Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Xiaosu, D.: Climate Change 2001: The Scientific Basis. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  5. Solomon, S., Plattner, G.K., Knutti, R., Friedlingstein, P.: Irreversible climate change due to carbon dioxide emissions. Proc. Natl. Acad. Sci. USA 106, 1704–1709 (2009)

    Google Scholar 

  6. Dai, A.: Drought under global warming: a review. Wiley Interdiscip. Rev. Clim. Change 2, 45–65 (2011)

    Google Scholar 

  7. Jeong, S.J., Ho, C.H., Brown, M.E., Kug, J.S., Piao, S.: Browning in desert boundaries in Asia in recent decades. J. Geophys. Res. Atmos. (2011). https://doi.org/10.1029/2010JD014633

    Article  Google Scholar 

  8. Kéfi, S., Rietkerk, M., Katul, G.G.: Vegetation pattern shift as a result of rising atmospheric CO\(_2\) in arid ecosystems. Theor. Popul. Biol. 74(4), 332–344 (2008)

    Google Scholar 

  9. Rotenberg, E., Yakir, D.: Contribution of semi-arid forests to the climate system. Science 327(5964), 451–454 (2010)

    Google Scholar 

  10. Abel, C., Horion, S., Tagesson, T., De Keersmaecker, W., Seddon, A.W.R., Abdi, A.M., Fensholt, R.: The human-environment nexus and vegetation-rainfall sensitivity in tropical drylands. Nat. Sustain. 4, 25–32 (2021)

    Google Scholar 

  11. Cui, J.P., Piao, S.L., Huntingford, C., et al.: Vegetation forcing modulates global land monsoon and water resources in a CO\(_2\)-enriched climate. Nat. Commun. 11(1), 1–11 (2020)

    Google Scholar 

  12. Chen, Z., Liu, J., Li, L., Wu, Y.P., Feng, G.L., Qian, Z.H., Sun, G.Q.: Effects of climate change on vegetation patterns in Hulun Buir Grassland. Phys. A Stat. Mech. Appl. 597, 127275 (2022)

    MathSciNet  Google Scholar 

  13. Kéfi, S., Rietkerk, M., Alados, C.L., Pueyo, Y., Papanastasis, V.P., ElAich, A., De Ruiter, P.C.: Spatial vegetation patterns and imminent desertification in mediterranean arid ecosystems. Nature 449(7159), 213–217 (2007)

    Google Scholar 

  14. Rietkerk, M., Dekker, S.C., De Ruiter, P.C., van de Koppel, J.: Self-organized patchiness and catastrophic shifts in ecosystems. Science 305(5692), 1926–1929 (2004)

    Google Scholar 

  15. Sun, G.Q., Wang, C.H., Chang, L.L., Wu, Y.P., Li, L., Jin, Z.: Effects of feedback regulation on vegetation patterns in semi-arid environments. Appl. Math. Model. 61, 200–215 (2018)

    MathSciNet  Google Scholar 

  16. Xue, Q., Sun, G.Q., Liu, C., Guo, Z.G., Jin, Z., Wu, Y.P., Feng, G.L.: Spatiotemporal dynamics of a vegetation model with nonlocal delay in semi-arid environment. Nonlinear Dyn. 99(4), 3407–3420 (2020)

    Google Scholar 

  17. Couteron, P., Lejeune, O.: Periodic spotted patterns in semi-arid vegetation explained by a propagation-inhibition model. J. Ecol. 89(4), 616–628 (2001)

    Google Scholar 

  18. Lejeune, O., Tlidi, M., Lefever, R.: Vegetation spots and stripes: dissipative structures in arid landscapes. Int. J. Quantum Chem. 98(2), 261–271 (2004)

    Google Scholar 

  19. Tarnita, C.E., Bonachela, J.A., Sheffer, E., et al.: A theoretical foundation for multi-scale regular vegetation patterns. Nature 541, 398–401 (2017)

    Google Scholar 

  20. Rietkerk, M., Van de Koppel, J.: Regular pattern formation in real ecosystems. Trends Ecol. Evol. 23(3), 169–175 (2008)

    Google Scholar 

  21. Meron, E.: Pattern-formation approach to modelling spatially extended ecosystems. Ecol. Model. 234, 70–82 (2012)

    Google Scholar 

  22. Liang, J., Liu, C., Sun, G.Q., Li, L., et al.: Nonlocal interactions between vegetation induce spatial patterning. Appl. Math. Comput. 428(1), 127061 (2022)

    MathSciNet  Google Scholar 

  23. Pascual, M., Guichard, F.: Criticality and disturbance in spatial ecological systems. Trends Ecol. Evolut. 20(2), 88–95 (2005)

    Google Scholar 

  24. Lenton, T.M., Livina, V.N., Dakos, V., et al.: Early warning of climate tipping points from critical slowing down: comparing methods to improve robustness. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 370(1962), 1185–1204 (2012)

    Google Scholar 

  25. Dakos, V., Bascompte, J.: Critical slowing down as early warning for the onset of collapse in mutualistic communities. Proc. Natl. Acad. Sci. USA 111(49), 17546–17551 (2014)

    Google Scholar 

  26. Dai, L., Vorselen, D., Korolev, K.S., et al.: Generic indicators for loss of resilience before a tipping point leading to population collapse. Science 336(6085), 1175–1177 (2012)

    Google Scholar 

  27. von Hardenberg, J., Meron, E., Shachak, M., Zarmi, Y.: Diversity of vegetation patterns and desertification. Phys. Rev. Lett. 87(19), 198101 (2001)

    Google Scholar 

  28. Aguiar, M.R., Sala, O.E.: Patch structure, dynamics and implications for the functioning of arid ecosystems. Trends Ecol. Evolut. 14(7), 273–277 (1999)

    Google Scholar 

  29. Liu, Y., Parolari, A.J., Kumar, M., Huang, C.W., Katul, G.G., Porporato, A.: Increasing atmospheric humidity and CO\(_2\) concentration alleviate forest mortality risk. Proc. Natl. Acad. Sci. 114(37), 9918–9923 (2017)

    Google Scholar 

  30. Anderegg, W.R., Kane, J.M., Anderegg, L.D.: Consequences of widespread tree mortality triggered by drought and temperature stress. Nat. Clim. Change 3(1), 30–36 (2013)

    Google Scholar 

  31. McDowell, N.G., Beerling, D.J., Breshears, D.D., et al.: The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends Ecol. Evolut. 26(10), 523–532 (2011)

    Google Scholar 

  32. Jamali, S., Seaquist, J., Eklundh, L., Ardö, J.: Automated mapping of vegetation trends with polynomials using NDVI imagery over the Sahel. Remote Sens. Environ. 141, 79–89 (2014)

    Google Scholar 

  33. Overpeck, J.T., Rind, D., Goldberg, R.: Climate-induced changes in forest disturbance and vegetation. Nature 343(6253), 51–53 (1990)

    Google Scholar 

  34. Peng, S., Piao, S., Ciais, P., et al.: Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature 501(7465), 88–92 (2013)

    Google Scholar 

  35. Brandt, M., Hiernaux, P., Rasmussen, K., et al.: Changes in rainfall distribution promote woody foliage production in the Sahel. Commun. Biol. 2(1), 1–10 (2019)

    Google Scholar 

  36. Garvie, M.R., Trenchea, C.: Optimal control of a nutrient-phytoplankton-zooplankton-fish system. SIAM J. Control. Optim. 46, 775–791 (2007)

    MathSciNet  Google Scholar 

  37. Sunmi, L., Gerardo, C.: Exploring optimal control strategies in seasonally varying flu-like epidemics. J. Theor. Biol. 412, 36–47 (2017)

    MathSciNet  Google Scholar 

  38. Chang, L.L., Gao, S.P., Wang, Z.: Optimal control of pattern formations for an SIR reaction–diffusion epidemic model. J. Theor. Biol. 536, 111003 (2022)

    MathSciNet  Google Scholar 

  39. Chang, L.L., Gong, W., Jin, Z., Sun, G.Q.: Sparse optimal control of pattern formations for an SIR reaction–diffusion epidemic model. SIAM J. Appl. Math. 82(5), 1764–1790 (2022)

    MathSciNet  Google Scholar 

  40. Choi, W., Shim, E.: Optimal strategies for social distancing and testing to control COVID-19. J. Theor. Biol. 512, 110568 (2021)

    MathSciNet  Google Scholar 

  41. Kim, S., Lee, J., Jung, E.: Mathematical model of transmission dynamics and optimal control strategies for 2009 A/H1N1 influenza in the Republic of Korea. J. Theor. Biol. 412, 74–85 (2017)

    Google Scholar 

  42. Klausmeier, A.: Regular and irregular patterns in semiarid vegetation. Science 284, 1826–1828 (1999)

    Google Scholar 

  43. Barbu, V.: Mathematical Methods in Optimization of Differential Systems. Kluwer Academic Publishers, Dordrecht (1994)

    Google Scholar 

  44. ÓNeill, B.C., Tebaldi, C., van Vuuren, D.P., et al.: The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016)

    Google Scholar 

  45. Matthes, K., Funke, B., Anderson, M.E., et al.: Solar forcing for CMIP6 (v3.1). Geosci. Model Dev. 10, 2247–2302 (2017)

    Google Scholar 

  46. Zhang, L.X., Chen, X.L., Xin, X.G.: Short commentary on CMIP6 scenario model intercomparison project (ScenarioMIP). Adv. Clim. Change Res. 15(5), 519 (2019)

    Google Scholar 

  47. Taylor, K.E., Stouffer, R.J., Meehl, G.A.: An overview of CMIP5 and the experiment design. Bull. Am. Meteor. Soc. 93(4), 485–498 (2012)

    Google Scholar 

  48. Calvin, K., Bond-Lamberty, B., Clarke, L., et al.: The SSP4: a world of deepening inequality. Glob. Environ. Change 42, 284–296 (2017)

  49. Sun, G.Q., Li, L., Zhang, Z.K.: Spatial dynamics of a vegetation model in an arid flat environment. Nonlinear Dyn. 73(4), 2207–2219 (2013)

    MathSciNet  Google Scholar 

  50. Garvie, M.R., Trenchea, C.: Optimal control of a nutrient-phytoplankton-zooplankton-fish system. SIAM J. Control. Optim. 46(3), 775–791 (2007)

    MathSciNet  Google Scholar 

  51. Apreutesei, N.C.: An optimal control problem for a pest, predator, and plant system. Nonlinear Anal. Real World Appl. 13(3), 1391–1400 (2012)

    MathSciNet  Google Scholar 

  52. Cowall, S.T., Oliver, J., Cook, L.P.: Data-driven dynamics of phytoplankton blooms in a reaction–diffusion NPZ model. J. Plankton Res. 43(5), 642–657 (2021)

    Google Scholar 

  53. Kutz, J.N.: Data-Driven Modeling & Scientific Computation: Methods for Complex Systems & Big Data. Oxford University Press, Oxford (2013)

    Google Scholar 

  54. Rudy, S.H., Brunton, S.L., Proctor, J.L., Kutz, J.N.: Data-driven discovery of partial differential equations. Sci. Adv. 3(4), e1602614 (2017)

    Google Scholar 

Download references

Acknowledgements

National Natural Science Foundation of China under Grant Nos. 42275034 and 42075029, Fundamental Research Program of Shanxi Province (Grant Nos. 202303021223009, 202203021212327 and 202203021211213), Program for the (Reserved) Discipline Leaders of Taiyuan Institute of Technology, Taiyuan Institute of Technology Scientific Research Initial Funding.

Funding

Funding was provided by National Natural Science Foundation of China (Grant Number 42275034, 42075029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-Quan Sun.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Model notation and interpretation

Parameter

Interpretation

Unit

k

The half-saturation constant of water infiltration

\((mmd)^{-1}\)

\(p_c\)

Maximal leaf conductance to CO\(_2\)

\(mod\ m^{-2}d^{-1}\)

A

Rainfall

\((mmd)^{-1}\)

\(D_1\)

Plant dispersal

\(m^2d^{-1}\)

\(D_2\)

Diffusion coefficient for water

\(m^2d^{-1}\)

\(C_a\)

Ambient CO\(_2\) concentration

\(mol\ mol^{-1}\)

\(C_i\)

Intercellular CO\(_2\) concentration (in the leaf)

\(mol\ mol^{-1}\)

\(C_1\)

Conversion coefficient of photosynthesis (mol) into biomass (g)

\(g\ mol^{-1}\)

\(R_b\)

Respiration per unit of biomass

\(d^{-1}\)

T

Temperature

\(^\circ C\)

\(e^*(T)\)

Saturated vapor pressure

kPa

\(R_h\)

Relative humidity \(\frac{e(T)}{e^*(T)}\)

-

R

The water absorption rate by roots

mm/d

L

Evaporation rate of water at the surface

mm/d

P

Vegetation density

\(gm^{-2}\)

W

Water

mm

t

Time

d

Appendix B. Parameter selection

\(R_b=1, Rh=0.4, p_c=10*10^{-3}, M_{10}=1.6, R=2.6*10^{-2}, D_1=1, D_2=200, \gamma =5.55*10^3, C_1=12, \frac{C_i}{C_a}=0.6, k=0.5.\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, J., Sun, GQ. Effects of climate change on vegetation pattern in Baotou, China. Nonlinear Dyn 112, 8675–8693 (2024). https://doi.org/10.1007/s11071-024-09500-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09500-3

Keywords

Navigation