Skip to main content
Log in

Nonlinear dynamics of a dual-rotor-bearing system with active elastic support dry friction dampers

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In present study, the modified harmonic balance-alternating frequency/time domain (HB-AFT) method with embedded arc-length continuation method is used to study the nonlinear dynamic characteristics of dual-rotor-bearing system with active elastic support dry friction damper (ESDFD). The friction on the contact interface between ESDFD moving and stationary disks is described by two-dimensional (2D) friction contact model. The dynamic model of dual-rotor is established by conical Timoshenko beam element and rigid disk element, while the inter-shaft bearing force is obtained by Hertz contact model. The reduced order model (ROM) of dual-rotor is constructed by the Craig-Bampton method. Based on the ROM, the modified HB-AFT method with embedded arc-length continuation procedure is used to solve the periodic solutions of dual-rotor system under unbalance excitation. The Floquet theory is employed to determine the stability of periodic solutions. Then the impact of key parameters such as Hertz contact stiffness and radial clearance of inter-shaft bearing, eccentricity of disk, and modal damping ratio on the primary resonance characteristics and inter-shaft bearing dynamic load of the dual-rotor system are revealed without considering ESDFD. Moreover, the influence of ESDFD normal force on the primary resonance peak and inter-shaft bearing dynamic load is investigated with considering ESDFD. The optimal normal force and controllable region for ESDFD to control the vibration under the target mode of dual-rotor system is determined. Furthermore, a control strategy based on altering normal force within the controllable region is designed. Results show that under the proposed control strategy, the damping effect of ESDFD significantly reduces the vibration amplitude of dual-rotor system and mitigates the dynamic load of inter-shaft bearing when passing through the resonance region, completely suppresses the bi-stable phenomenon and vibration jump behavior of dual-rotor system. Accordingly, the structural damage caused by excessive vibration is reduced, which demonstrates promising engineering applications of active ESDFD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

Abbreviations

l :

Element length

ρ :

Mass density

ν :

Poisson’s ratio

r i,R i :

Inner and outer radii of the element at node i

r j,R j :

Inner and outer radii of the element at node j

E :

Young’s modulus

G :

Shear modulus

References

  1. Lu, Z.Y., Wang, X.D., Hou, L., Chen, Y.S., Liu, X.Y.: Nonlinear response analysis for an aero engine dual-rotor system coupled by the inter-shaft bearing. Arch. Appl. Mech. 89, 1275–1288 (2019)

    Google Scholar 

  2. Zhang, Z.Y., Chen, Y.S., Li, Z.G.: Influencing factors of the dynamic hysteresis in varying compliance vibrations of a ball bearing. Science China Technol. Sci. 58, 775–782 (2015)

    Google Scholar 

  3. Yang, R., Hou, L., Jin, Y.L., Chen, Y.S., Zhang, Z.Y.: The varying compliance resonance in a ball bearing rotor system affected by different ball numbers and rotor eccentricities. J. Tribol. 140, 051101 (2018)

    Google Scholar 

  4. Wang, S.J., Wang, C.Y., Lin, D.F., Liao, M.F., Chen, Z.H.: Integrated configuration design and experimental research on vibration reduction of an active elastic support/dry friction damper. J. Propul. Technol. 44, 187–196 (2023)

    Google Scholar 

  5. Vance, J.M.: Rotordynamics of Turbomachinery. Wiley, New York (1988)

    Google Scholar 

  6. Li, X.H., Taylor, D.L.: Nonsynchronous motion of squeeze film damper systems. J. Tribol. 109, 169–176 (1987)

    Google Scholar 

  7. Gunter, E.J., Barrett, L.E., Allaire, P.E.: Design of nonlinear squeeze-film dampers for aircraft engines. J. Lubr. Technol. 99, 57–64 (1977)

    Google Scholar 

  8. Delgado, A., San, A.L.: Nonlinear identification of mechanical parameters in a squeeze film damper with integral mechanical Seal. J. Eng. Gas Turbines Power 131, 042504 (2009)

    Google Scholar 

  9. Andrés, L.S., Den, S., Jeung, S.H.: On the force coefficients of a flooded, open ends short length squeeze film damper: from theory to practice (and back). J. Eng. Gas Turbines Power 140, 012502 (2017)

    Google Scholar 

  10. Jiang, M.H., Zhu, C.S. Model free adaptive control of rotor system with active friction damper. J. Vib. Eng. 2023: 1–10.

  11. Zhang, P., He, J.X., Gao, X.H., Zhu, C.S. Vibration control of active dry friction damper dual-rotor system based on rotational speed region on-off control. J. Aerosp. Power. 2023, 1–11.

  12. Fan, T.Y., Liao, M.F.: Dynamic behavior of a rotor with dry fricition dampers. Mech. Sci. Techonl 22, 743–745 (2003)

    Google Scholar 

  13. Liao, M.F., Song, M.B., Wang, S.J.: Active elastic support/dry friction damper with piezoelectric ceramic actuator. Shock. Vib. 2014, 1–10 (2014)

    Google Scholar 

  14. Liao, M.F., Li, Y., Song, M.B., Wang, S.J.: Dynamics modeling and numerical analysis of rotor with elastic support/dry friction dampers. Trans. Nanjing Univ. Aeronaut. Astronaut. 35, 69–83 (2018)

    Google Scholar 

  15. Wang, S.J., Liao, M.F., Song, M.B., Xu, Y.G. An active elastic support/dry friction damper: new modeling and analysis for vibration control of rotor systems. In: Proceedings of the 10th International Conference on Rotor Dynamics-IFToMM. 2018, vol. 62, pp. 19–33

  16. Liu, D., Zhou, L., Zhang, D.Y., Wang, H.: A strategy of vibration control for rotors with dry friction dampers. J. Vib. Control 29, 2907–2920 (2022)

    MathSciNet  Google Scholar 

  17. Petrov, E.P., Ewins, D.J.: Analytical formulation of friction interface elements for analysis of nonlinear multi-harmonic vibrations of bladed disks. J. Turbomach. 125, 364–371 (2003)

    Google Scholar 

  18. Yang, B.D., Menq, C.H.: Modeling of friction contact and its application to the design of shroud contact. J. Eng. Gas Turbines Power 119, 958–963 (1997)

    Google Scholar 

  19. Firrone, C.M., Zucca, S.: Modelling friction contacts in structural dynamics and its application to turbine bladed disks. Numer. Anal. Theory Appl. 14, 301–334 (2011)

    Google Scholar 

  20. Afzal, M., Lopez Arteaga, I., Kari, L.: An analytical calculation of the Jacobian matrix for 3D friction contact model applied to turbine blade shroud contact. Comput. Struct. 177, 204–217 (2016)

    Google Scholar 

  21. Menq, C.H., Chidamparam, P., Griffin, J.H.: Friction damping of two-dimensional motion and its application in vibration control. J. Sound Vib. 144, 427–447 (1991)

    Google Scholar 

  22. Xiao, F.C., Li, L., Wu, Y.G., Fan, Y., Zhang, H. A linearization method based on 3D contact model for the steady-state analysis towards complex engineering structures containing friction. In: ASME Turbo Expo: Turbomachinery Technical Conference and Exposition. 2022, V08BT27A019: GT2022–82413.

  23. Sanliturk, K.Y., Ewins, D.J.: Modelling two-dimensional friction contact and its application using harmonic balance method. J. Sound Vib. 193, 511–523 (1996)

    Google Scholar 

  24. Sun, H., Zhang, D.Y., Wu, Y.G., Shen, Q.Y., Hu, D.Y. A semi-analytical multi-harmonic balance method on full-3D contact model for the dynamic analysis of dry friction systems. Chinese J. Aeronaut. (2023).

  25. Lu, K., Zhang, K.Y., Zhang, H.P., Gu, X.H., Jin, Y.L., Zhao, S.B., et al.: A review of model order reduction methods for large-scale structure systems. Shock. Vib. 2021, 1–19 (2021)

    Google Scholar 

  26. Yan, Z.P., Dai, H.H., Wang, Q.S., Atluri, S.: Harmonic balance methods: a review and recent developments. Comput. Model. Eng. Sci. 137, 1419–1459 (2023)

    Google Scholar 

  27. Lu, K., Jin, Y.L., Huang, P.F., Zhang, F., Zhang, H.P., Fu, C., et al.: The applications of POD method in dual rotor-bearing systems with coupling misalignment. Mech. Syst. Signal Process. 150, 107236 (2021)

    Google Scholar 

  28. Shanmugam, A., Padmanabhan, C.: A fixed-free interface component mode synthesis method for rotor dynamic analysis. J. Sound Vib. 297, 664–679 (2006)

    Google Scholar 

  29. Jin, Y.L., Lu, K., Huang, C.X., Hou, L., Chen, Y.S.: Nonlinear dynamic analysis of a complex dual-rotor-bearing system based on a novel model reduction method. Appl. Math. Model. 75, 553–571 (2019)

    MathSciNet  Google Scholar 

  30. Prabith, K., Praveen, I.R.: Response and stability analysis of a two-spool aero-engine rotor system undergoing multi-disk rub-impact. Int. J. Mech. Sci. 213, 106861 (2022)

    Google Scholar 

  31. Petrov, E.P.: A high-accuracy model reduction for analysis of nonlinear vibrations in structures with contact interfaces. J. Eng. Gas Turbines Power 133, 102503 (2011)

    Google Scholar 

  32. Wu, Y.G., Li, L., Fan, Y., Ma, H.Y., Zucca, S., Gola, M.: Design of wave-like dry friction and piezoelectric hybrid dampers for thin-walled structures. J. Sound Vib. 493, 115821 (2021)

    Google Scholar 

  33. Chen, Y., Hou, L., Chen, G., Song, H.Y., Lin, R.Z., Jin, Y.H., et al.: Nonlinear dynamics analysis of a dual-rotor-bearing-casing system based on a modified HB-AFT method. Mech. Syst. Signal Process. 185, 109805 (2023)

    Google Scholar 

  34. Kim, Y.B., Noah, S.T.: Quasi-periodic response and stablity analysis for a nonlinear Jeffcott rotor. J. Sound Vib. 190, 239–253 (1996)

    Google Scholar 

  35. Kim, Y.B., Choi, S.K.: A multiple harmonic-balance method for the internal resonant vibration of a nonlinear Jeffcott rotor. J. Sound Vib. 208, 745–761 (1997)

    Google Scholar 

  36. Zhang, Z.Y., Chen, Y.S.: Harmonic balance method with alternating frequency/time domain technique for nonlinear dynamical system with fractional exponential. Appl. Math. Mech. 35, 423–436 (2014)

    MathSciNet  Google Scholar 

  37. Zhang, B., Chen, X., Xiang, F.G., Gan, X.H., Ren, G.M.: Dynamic characteristics of rotor-squeeze film damper-support system excited by base harmonic excitations using MHB-AFT method. J. Eng. Gas Turbines Power 145, 061008 (2023)

    Google Scholar 

  38. Chang, Z.Y., Hou, L., Lin, R.Z., Jin, Y.H., Chen, Y.S.: A modified IHB method for nonlinear dynamic and thermal coupling analysis of rotor-bearing systems. Mech. Syst. Signal Process. 200, 110586 (2023)

    Google Scholar 

  39. Han, Y., Ri, K., Yun, C., Kim, K., Kim, K.: Nonlinear vibration analysis and stability analysis of rotor systems supported on SFD by combining DQFEM, CMS and IHB methods. Appl. Math. Model. 121, 828–842 (2023)

    MathSciNet  Google Scholar 

  40. Ma, H., Yin, F.l., Wu, Z.Y., Tai, X.Y., Wen, B.C. Nonlinear vibration response analysis of a rotor-blade system with blade-tip rubbing. Nonlinear Dyn. 2015, 84: 1225–1258

  41. Chen, G.: Vibration modelling and verifications for whole aero-engine. J. Sound Vib. 349, 163–176 (2015)

    Google Scholar 

  42. Ma, X.X., Ma, H., Qin, H.Q., Guo, X.M., Zhao, C.G., Yu, M.Y.: Nonlinear vibration response characteristics of a dual-rotor-bearing system with squeeze film damper. Chin. J. Aeronaut. 34, 128–147 (2021)

    Google Scholar 

  43. Sun, C.Z., Chen, Y.S., Hou, L.: Nonlinear dynamical behaviors of a complicated dual-rotor aero-engine with rub-impact. Arch. Appl. Mech. 88, 1305–1324 (2018)

    Google Scholar 

  44. Gupta, T.C., Gupta, K., Sehgal, D.K.: Instability and chaos of a flexible rotor ball bearing system: an investigation on the influence of rotating imbalance and bearing clearance. J. Eng. Gas Turbines Power 133, 082501 (2011)

    Google Scholar 

  45. Yu, P.C., Chen, G., Li, L.X.: Modal analysis strategy and nonlinear dynamic characteristics of complicated aero-engine dual-rotor system with rub-impact. Chin. J. Aeronaut. 35, 184–203 (2022)

    Google Scholar 

  46. Li, L., Liu, J.C., Li, C.: Analysis on damping effect of dry friction damper under wideband multi-harmonic excitation. J. Aerosp. Power. 31, 2171–2180 (2016)

    Google Scholar 

  47. Yang, R., Jin, Y.L., Hou, L., Chen, Y.S.: Study for ball bearing outer race characteristic defect frequency based on nonlinear dynamics analysis. Nonlinear Dyn. 90, 781–796 (2017)

    Google Scholar 

  48. Yang, R.: Research on Dynamic Characteristics and Its Application of a Ball Bearing-Rigid Rotor System with a Local Defect. Harbin Institute of Technology, Harbin (2018)

    Google Scholar 

  49. Hibner, D.H., Bhat, S.T., Buono, D.F. Optimum friction damping of a flexible rotor. In: ASME: International Gas Turbine Conference and Products Show. 1981, V004T13A019: 81-GT-156.

  50. Den Hartog, J.P.: Forced vibrations with combined coulomb and viscous friction. Trans. Am. Soc. Mech. Eng. 53, 107–115 (2023)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Science and Technology Major Project (J2019-IV-0005-0073).

Funding

The funding was supported by the National Science and Technology Major Project (J2019-IV-0005-0073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuqian Cao.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Dynamic equation of conical beam element

Due to the cross-section parameters vary along axial position of conical beam element, they can be calculated using mean values by assuming the section is short. As a result, transverse shear deformation coefficient can be expressed as follows

$$ \varphi_{s} = \frac{{12EI_{m} \kappa }}{{GA_{m} l^{2} }} $$
(A90)

where

$$ I_{m} = \frac{{\pi \left( {R_{m}^{4} - r_{m}^{4} } \right)}}{4} $$
(A91)
$$ A_{m} = \pi \left( {R_{m}^{2} - r_{m}^{2} } \right) $$
(A92)
$$ \kappa = \frac{7 + 6\upsilon }{{6\left( {1 + \upsilon } \right)}}\left[ {1 + \frac{20 + 12\upsilon }{{7 + 6\upsilon }}\left( {\frac{{R_{m} r_{m} }}{{R_{m}^{2} + r_{m}^{2} }}} \right)^{2} } \right] $$
(A93)
$$ R_{m} = \sqrt {\frac{1}{2}\left( {R_{i}^{2} + R_{j}^{2} } \right)} $$
(A94)
$$ r_{m} = \sqrt {\frac{1}{2}\left( {r_{i}^{2} + r_{j}^{2} } \right)} $$
(A95)

According to the FEM and Lagrange’s principle, the dynamic matrix for conical beam element can be expressed as follows

$$ \left[ {{\mathbf{M}}_{e}^{t} } \right]_{con} = \frac{{\rho A_{L} l}}{{1260\left( {1 + \varphi_{s} } \right)^{2} }}\left[ {\begin{array}{*{20}c} {m_{1} } & 0 & 0 & {lm_{2} } & {m_{3} } & 0 & 0 & { - lm_{4} } \\ 0 & {m_{1} } & { - lm_{2} } & 0 & 0 & {m_{3} } & {lm_{4} } & 0 \\ 0 & { - lm_{2} } & {l^{2} m_{5} } & 0 & 0 & { - lm_{6} } & { - l^{2} m_{7} } & 0 \\ {lm_{2} } & 0 & 0 & {l^{2} m_{5} } & {lm_{6} } & 0 & 0 & { - l^{2} m_{7} } \\ {m_{3} } & 0 & 0 & {lm_{6} } & {m_{8} } & 0 & 0 & { - lm_{9} } \\ 0 & {m_{3} } & { - lm_{6} } & 0 & 0 & {m_{8} } & {lm_{9} } & 0 \\ 0 & {lm_{4} } & { - l^{2} m_{7} } & 0 & 0 & {lm_{9} } & {l^{2} m_{10} } & 0 \\ { - lm_{4} } & 0 & 0 & { - l^{2} m_{7} } & { - lm_{9} } & 0 & 0 & {l^{2} m_{10} } \\ \end{array} } \right] $$
(A96)
$$ \left[ {{\mathbf{M}}_{e}^{r} } \right]_{con} = \frac{{\rho I_{L} }}{{210l\left( {1 + \varphi_{s} } \right)^{2} }}\left[ {\begin{array}{*{20}c} {m_{11} } & 0 & 0 & {lm_{12} } & { - m_{11} } & 0 & 0 & {lm_{13} } \\ 0 & {m_{11} } & { - lm_{12} } & 0 & 0 & { - m_{11} } & { - lm_{13} } & 0 \\ 0 & { - lm_{12} } & {l^{2} m_{14} } & 0 & 0 & {lm_{12} } & { - l^{2} m_{15} } & 0 \\ {lm_{12} } & 0 & 0 & {l^{2} m_{14} } & { - lm_{12} } & 0 & 0 & { - l^{2} m_{15} } \\ { - m_{11} } & 0 & 0 & { - lm_{12} } & {m_{11} } & 0 & 0 & { - lm_{13} } \\ 0 & { - m_{11} } & {lm_{12} } & 0 & 0 & {m_{11} } & {lm_{13} } & 0 \\ 0 & { - lm_{13} } & { - l^{2} m_{15} } & 0 & 0 & {lm_{13} } & {l^{2} m_{16} } & 0 \\ {lm_{13} } & 0 & 0 & { - l^{2} m_{15} } & { - lm_{13} } & 0 & 0 & {l^{2} m_{16} } \\ \end{array} } \right] $$
(A97)
$$ \left[ {{\mathbf{K}}_{e} } \right]_{con} = {\mathbf{K}}_{e}^{b} + {\mathbf{K}}_{e}^{s} $$
(A98)
$$ {\mathbf{K}}_{e}^{b} = \frac{{{\rm E}I_{L} }}{{105l^{3} \left( {1 + \varphi_{s} } \right)^{2} }}\left[ {\begin{array}{*{20}c} {k_{1} } & 0 & 0 & {lk_{2} } & { - k_{1} } & 0 & 0 & {lk_{3} } \\ 0 & {k_{1} } & { - lk_{2} } & 0 & 0 & { - k_{1} } & { - lk_{3} } & 0 \\ 0 & { - lk_{2} } & {l^{2} k_{4} } & 0 & 0 & {lk_{2} } & {l^{2} k_{5} } & 0 \\ {lk_{2} } & 0 & 0 & {l^{2} k_{4} } & { - lk_{2} } & 0 & 0 & {l^{2} k_{5} } \\ { - k_{1} } & 0 & 0 & { - lk_{2} } & {k_{1} } & 0 & 0 & { - lk_{3} } \\ 0 & { - k_{1} } & {lk_{2} } & 0 & 0 & {k_{1} } & {lk_{3} } & 0 \\ 0 & { - lk_{3} } & {l^{2} k_{5} } & 0 & 0 & {lk_{3} } & {l^{2} k_{6} } & 0 \\ {lk_{3} } & 0 & 0 & {l^{2} k_{5} } & { - lk_{3} } & 0 & 0 & {l^{2} k_{6} } \\ \end{array} } \right] $$
(A99)
$$ {\mathbf{K}}_{e}^{s} = \frac{{GA_{L} \varphi_{s}^{2} }}{{12\kappa_{s} l\left( {1 + \varphi_{s} } \right)^{2} }}\left[ {\begin{array}{*{20}c} {k_{7} } & 0 & 0 & {lk_{8} } & { - k_{7} } & 0 & 0 & {lk_{8} } \\ 0 & {k_{7} } & { - lk_{8} } & 0 & 0 & { - k_{7} } & { - lk_{8} } & 0 \\ 0 & { - lk_{8} } & {l^{2} k_{9} } & 0 & 0 & {lk_{8} } & {l^{2} k_{9} } & 0 \\ {lk_{8} } & 0 & 0 & {l^{2} k_{9} } & { - lk_{8} } & 0 & 0 & {l^{2} k_{9} } \\ { - k_{7} } & 0 & 0 & { - lk_{8} } & {k_{7} } & 0 & 0 & { - lk_{8} } \\ 0 & { - k_{7} } & {lk_{8} } & 0 & 0 & {k_{7} } & {lk_{8} } & 0 \\ 0 & { - lk_{8} } & {l^{2} k_{9} } & 0 & 0 & {lk_{8} } & {l^{2} k_{9} } & 0 \\ {lk_{8} } & 0 & 0 & {l^{2} k_{9} } & { - lk_{8} } & 0 & 0 & {l^{2} k_{9} } \\ \end{array} } \right] $$
(A100)
$$ \left[ {{\mathbf{G}}_{e} } \right]_{con} = \frac{{\rho I_{L} }}{{105l\left( {1 + \varphi_{s} } \right)^{2} }}\left[ {\begin{array}{*{20}c} 0 & {m_{11} } & { - lm_{12} } & 0 & 0 & { - m_{11} } & { - lm_{13} } & 0 \\ { - m_{11} } & 0 & 0 & { - lm_{12} } & {m_{11} } & 0 & 0 & { - lm_{13} } \\ {lm_{12} } & 0 & 0 & {l^{2} m_{14} } & { - lm_{12} } & 0 & 0 & { - l^{2} m_{15} } \\ 0 & {lm_{12} } & { - l^{2} m_{14} } & 0 & 0 & { - lm_{12} } & {l^{2} m_{15} } & 0 \\ 0 & { - m_{11} } & {lm_{12} } & 0 & 0 & {m_{11} } & {lm_{13} } & 0 \\ {m_{11} } & 0 & 0 & {lm_{12} } & { - m_{11} } & 0 & 0 & {lm_{13} } \\ {lm_{13} } & 0 & 0 & { - l^{2} m_{15} } & { - lm_{13} } & 0 & 0 & {l^{2} m_{16} } \\ 0 & {lm_{13} } & {l^{2} m_{15} } & 0 & 0 & { - lm_{13} } & { - l^{2} m_{16} } & 0 \\ \end{array} } \right] $$
(A101)

in which

$$ \begin{array}{l} m_{1} = \left( {105\alpha _{1} + 42\alpha _{2} + 420} \right)\varphi _{s}^{2} + \left( {210\alpha _{1} + 78\alpha _{2} + 882} \right)\varphi _{s} + \left( {108\alpha _{1} + 38\alpha _{2} + 468} \right) \\ m_{2} = \left( {\begin{array}{*{20}r} \hfill {42} \\ \end{array} \alpha _{1} + \begin{array}{*{20}r} \hfill {21} \\ \end{array} \alpha _{2} + \begin{array}{*{20}r} \hfill {105} \\ \end{array} } \right)\varphi _{s}^{2} /2 + \left( {\begin{array}{*{20}r} \hfill {81} \\ \end{array} \alpha _{1} + 36\alpha _{2} + \begin{array}{*{20}r} \hfill {231} \\ \end{array} } \right)\varphi _{s} /2 + \left( {\begin{array}{*{20}r} \hfill {42} \\ \end{array} \alpha _{1} + \begin{array}{*{20}r} \hfill {17} \\ \end{array} \alpha _{2} + \begin{array}{*{20}r} \hfill {132} \\ \end{array} } \right)/2 \\ m_{3} = \left( {\begin{array}{*{20}r} \hfill {105} \\ \end{array} \alpha _{1} + \begin{array}{*{20}r} \hfill {63} \\ \end{array} \alpha _{2} + \begin{array}{*{20}r} \hfill {210} \\ \end{array} } \right)\varphi _{s}^{2} + \left( {\begin{array}{*{20}r} \hfill {189} \\ \end{array} \alpha _{1} + \begin{array}{*{20}r} \hfill {111} \\ \end{array} \alpha _{2} + \begin{array}{*{20}r} \hfill {378} \\ \end{array} } \right)\varphi _{s} + \left( {\begin{array}{*{20}r} \hfill {81} \\ \end{array} \alpha _{1} + \begin{array}{*{20}r} \hfill {46} \\ \end{array} \alpha _{2} + \begin{array}{*{20}r} \hfill {162} \\ \end{array} } \right) \\ m_{4} = \left( {42\alpha _{1} + \begin{array}{*{20}r} \hfill {21} \\ \end{array} \alpha _{2} + \begin{array}{*{20}r} \hfill {105} \\ \end{array} } \right)\varphi _{s}^{2} /2 + \left( {\begin{array}{*{20}r} \hfill {81} \\ \end{array} \alpha _{1} + \begin{array}{*{20}r} \hfill {42} \\ \end{array} \alpha _{2} + \begin{array}{*{20}r} \hfill {189} \\ \end{array} } \right)\varphi _{s} /2 + \left( {\begin{array}{*{20}r} \hfill {36} \\ \end{array} \alpha _{1} + \begin{array}{*{20}r} \hfill {19} \\ \end{array} \alpha _{2} + \begin{array}{*{20}r} \hfill {78} \\ \end{array} } \right)/2 \\ m_{5} = \left( {\begin{array}{*{20}r} \hfill {21} \\ \end{array} \alpha _{1} + \begin{array}{*{20}r} \hfill {12} \\ \end{array} \alpha _{2} + \begin{array}{*{20}r} \hfill {42} \\ \end{array} } \right)\varphi _{s}^{2} /4 + \left( {\begin{array}{*{20}r} \hfill {18} \\ \end{array} \alpha _{1} + \begin{array}{*{20}r} \hfill 9 \\ \end{array} \alpha _{2} + \begin{array}{*{20}r} \hfill {42} \\ \end{array} } \right)\varphi _{s} /2 + \left( {\begin{array}{*{20}r} \hfill 9 \\ \end{array} \alpha _{1} + \begin{array}{*{20}r} \hfill 4 \\ \end{array} \alpha _{2} + \begin{array}{*{20}r} \hfill {24} \\ \end{array} } \right)/2 \\ m_{6} = \left( {\begin{array}{*{20}r} \hfill {63} \\ \end{array} \alpha _{1} + \begin{array}{*{20}r} \hfill {42} \\ \end{array} \alpha _{2} + \begin{array}{*{20}r} \hfill {105} \\ \end{array} } \right)\varphi _{s}^{2} /2 + \left( {\begin{array}{*{20}r} \hfill {108} \\ \end{array} \alpha _{1} + \begin{array}{*{20}r} \hfill {69} \\ \end{array} \alpha _{2} + \begin{array}{*{20}r} \hfill {189} \\ \end{array} } \right)\varphi _{s} /2 + \left( {\begin{array}{*{20}r} \hfill {42} \\ \end{array} \alpha _{1} + \begin{array}{*{20}r} \hfill {25} \\ \end{array} \alpha _{2} + \begin{array}{*{20}r} \hfill {78} \\ \end{array} } \right)/2 \\ m_{7} = \left( {\begin{array}{*{20}r} \hfill {21} \\ \end{array} \alpha _{1} + \begin{array}{*{20}r} \hfill {12} \\ \end{array} \alpha _{2} + \begin{array}{*{20}r} \hfill {42} \\ \end{array} } \right)\varphi _{s}^{2} /4 + \left( {\begin{array}{*{20}r} \hfill {21} \\ \end{array} \alpha _{1} + \begin{array}{*{20}r} \hfill {12} \\ \end{array} \alpha _{2} + \begin{array}{*{20}r} \hfill {42} \\ \end{array} } \right)\varphi _{s} /2 + \left( {\begin{array}{*{20}r} \hfill 9 \\ \end{array} \alpha _{1} + \begin{array}{*{20}r} \hfill 5 \\ \end{array} \alpha _{2} + \begin{array}{*{20}r} \hfill {18} \\ \end{array} } \right)/2 \\ m_{8} = \left( {\begin{array}{*{20}r} \hfill {315} \\ \end{array} \alpha _{1} + \begin{array}{*{20}r} \hfill {252} \\ \end{array} \alpha _{2} + \begin{array}{*{20}r} \hfill {420} \\ \end{array} } \right)\varphi _{s}^{2} + \left( {\begin{array}{*{20}r} \hfill {672} \\ \end{array} \alpha _{1} + \begin{array}{*{20}r} \hfill {540} \\ \end{array} \alpha _{2} + \begin{array}{*{20}r} \hfill {882} \\ \end{array} } \right)\varphi _{s} + \left( {\begin{array}{*{20}r} \hfill {360} \\ \end{array} \alpha _{1} + \begin{array}{*{20}r} \hfill {290} \\ \end{array} \alpha _{2} + \begin{array}{*{20}r} \hfill {468} \\ \end{array} } \right) \\ m_{9} = \left( {\begin{array}{*{20}r} \hfill {63} \\ \end{array} \alpha _{1} + \begin{array}{*{20}r} \hfill {42} \\ \end{array} \alpha _{2} + \begin{array}{*{20}r} \hfill {105} \\ \end{array} } \right)\varphi _{s}^{2} /2 + \left( {\begin{array}{*{20}r} \hfill {150} \\ \end{array} \alpha _{1} + \begin{array}{*{20}r} \hfill {105} \\ \end{array} \alpha _{2} + \begin{array}{*{20}r} \hfill {231} \\ \end{array} } \right)\varphi _{s} /2 + \left( {\begin{array}{*{20}r} \hfill {90} \\ \end{array} \alpha _{1} + \begin{array}{*{20}r} \hfill {65} \\ \end{array} \alpha _{2} + \begin{array}{*{20}r} \hfill {132} \\ \end{array} } \right)/2 \\ m_{{10}} = \left( {\begin{array}{*{20}r} \hfill {21} \\ \end{array} \alpha _{1} + \begin{array}{*{20}r} \hfill {12} \\ \end{array} \alpha _{2} + \begin{array}{*{20}r} \hfill {42} \\ \end{array} } \right)\varphi _{s}^{2} /4 + \left( {\begin{array}{*{20}r} \hfill {24} \\ \end{array} \alpha _{1} + \begin{array}{*{20}r} \hfill {15} \\ \end{array} \alpha _{2} + \begin{array}{*{20}r} \hfill {42} \\ \end{array} } \right)\varphi _{s} /2 + \left( {\begin{array}{*{20}r} \hfill {15} \\ \end{array} \alpha _{1} + \begin{array}{*{20}r} \hfill {10} \\ \end{array} \alpha _{2} + \begin{array}{*{20}r} \hfill {24} \\ \end{array} } \right)/2 \\ m_{{11}} = 126\delta _{1} + 72\delta _{2} + 30\delta _{4} + 45\delta _{3} + 252 \\ m_{{12}} = \left( { - 42\delta _{1} - 21\delta _{2} - 7.5\delta _{4} - 12\delta _{3} - 105} \right)\varphi _{s} + 21\delta _{1} + 15\delta _{2} + 7.5\delta _{4} + 10.5\delta _{3} + 21 \\ m_{{13}} = \left( { - 63\delta _{1} - 42\delta _{2} - 22.5\delta _{4} - 30\delta _{3} - 105} \right)\varphi _{s} + 21 - 7.5\delta _{4} - 7.5\delta _{3} - 6\delta _{2} \\ m_{{14}} = \left( {17.5\delta _{1} + 7\delta _{2} + 2\delta _{4} + 3.5\delta _{3} + 70} \right)\varphi _{s}^{2} + \left( {35 - 7\delta _{1} - 3.5\delta _{4} - 5\delta _{3} - 7\delta _{2} } \right)\varphi _{s} + 7\delta _{1} + 4\delta _{2} + 2\delta _{4} + 2.75\delta _{3} + 28 \\ m_{{15}} = \left( { - 17.5\delta _{1} - 10.5\delta _{2} - 5\delta _{4} - 7\delta _{3} - 35} \right)\varphi _{s}^{2} + \left( {17.5\delta _{1} + 10.5\delta _{2} + 5\delta _{4} + 7\delta _{3} + 35} \right)\varphi _{s} + 3.5\delta _{1} + 3\delta _{2} + 2.5\delta _{4} + 2.75\delta _{3} + 7 \\ m_{{16}} = \left( {52.5\delta _{1} + 42\delta _{2} + 30\delta _{4} + 35\delta _{3} + 70} \right)\varphi _{s}^{2} + \left( {42\delta _{1} + 42\delta _{2} + 37.5\delta _{4} + 40\delta _{3} + 35} \right)\varphi _{s} + 21\delta _{1} + 18\delta _{2} + 15\delta _{4} + 16.25\delta _{3} + 28 \\ \end{array} $$
(A102)
$$ \begin{array}{l} k_{1} = 630\delta_{1} + 504\delta_{2} + 396\delta_{4} + 441\delta_{3} + 1260 \\ k_{2} = - \left( {105\delta_{1} + 105\delta_{2} + 84\delta_{4} + 94.5\delta_{3} } \right)\varphi_{s} + 210\delta_{1} + 147\delta_{2} + 114\delta_{4} + 126\delta_{3} + 630 \\ k_{3} = \left( {105\delta_{1} + 105\delta_{2} + 84\delta_{4} + 94.5\delta_{3} } \right)\varphi_{s} + 420\delta_{1} + 357\delta_{2} + 282\delta_{4} + 315\delta_{3} + 630 \\ k_{4} = \left( {52.5\delta_{1} + 35\delta_{2} + 21\delta_{4} + 26.25\delta_{3} + 105} \right)\varphi_{s}^{2} + \left( {210 - 42\delta_{4} - 42\delta_{3} - 35\delta_{2} } \right)\varphi_{s} \\ + 105\delta_{1} + 56\delta_{2} + 36\delta_{4} + 42\delta_{3} + 420 \\ k_{5} = \left( { - 52.5\delta_{1} - 35\delta_{2} - 21\delta_{4} - 26.25\delta_{3} - 105} \right)\varphi_{s}^{2} \\ + \left( { - 105\delta_{1} - 70\delta_{2} - 42\delta_{4} - 52.5\delta_{3} - 210} \right)\varphi_{s} \\ + 105\delta_{1} + 91\delta_{2} + 78\delta_{4} + 84\delta_{3} + 210 \\ k_{6} = \left( {52.5\delta_{1} + 35\delta_{2} + 21\delta_{4} + 26.25\delta_{3} + 105} \right)\varphi_{s}^{2} \\ + \left( {210\delta_{1} + 175\delta_{2} + 126\delta_{4} + 147\delta_{3} + 210} \right)\varphi_{s} \\ + 315\delta_{1} + 266\delta_{2} + 204\delta_{4} + 231\delta_{3} + 420 \\ k_{7} = 6\alpha_{1} + 4\alpha_{2} + 12 \\ k_{8} = 3\alpha_{1} + 2\alpha_{2} + 6 \\ k_{9} = 1.5\alpha_{1} + \alpha_{2} + 3 \\ \end{array} $$
(A103)

The parameters related to geometric dimensions of conical shaft section can be expressed as

$$ \alpha_{1} = {{2\pi \left( {R_{i} \Delta R - r_{i} \Delta r} \right)} \mathord{\left/ {\vphantom {{2\pi \left( {R_{i} \Delta R - r_{i} \Delta r} \right)} {A_{i} }}} \right. \kern-0pt} {A_{i} }} $$
(A104)
$$ \alpha_{2} = {{\pi \left( {\Delta R^{2} - \Delta r_{i}^{2} } \right)} \mathord{\left/ {\vphantom {{\pi \left( {\Delta R^{2} - \Delta r_{i}^{2} } \right)} {A_{i} }}} \right. \kern-0pt} {A_{i} }} $$
(A105)
$$ \delta_{1} = {{\pi \left( {R_{i}^{3} \Delta R - r_{i}^{3} \Delta r} \right)} \mathord{\left/ {\vphantom {{\pi \left( {R_{i}^{3} \Delta R - r_{i}^{3} \Delta r} \right)} {I_{i} }}} \right. \kern-0pt} {I_{i} }} $$
(A106)
$$ \delta_{2} = {{3\pi \left( {R_{i}^{2} \Delta R^{2} - r_{i}^{2} \Delta r_{i}^{2} } \right)} \mathord{\left/ {\vphantom {{3\pi \left( {R_{i}^{2} \Delta R^{2} - r_{i}^{2} \Delta r_{i}^{2} } \right)} {2I_{i} }}} \right. \kern-0pt} {2I_{i} }} $$
(A107)
$$ \delta_{3} = {{\pi \left( {R_{i} \Delta R^{3} - r_{i} \Delta r^{3} } \right)} \mathord{\left/ {\vphantom {{\pi \left( {R_{i} \Delta R^{3} - r_{i} \Delta r^{3} } \right)} {I_{i} }}} \right. \kern-0pt} {I_{i} }} $$
(A108)
$$ \delta_{4} = {{\pi \left( {\Delta R^{4} - \Delta r_{i}^{4} } \right)} \mathord{\left/ {\vphantom {{\pi \left( {\Delta R^{4} - \Delta r_{i}^{4} } \right)} {4I_{i} }}} \right. \kern-0pt} {4I_{i} }} $$
(A109)

in which

$$ \Delta R = R_{j} - R_{i} $$
(A110)
$$ \Delta r = r_{j} - r_{i} $$
(A111)

Ai and Ii represent the cross-section area and moment of inertia of node i

$$ A_{i} = \pi \left( {R_{i}^{2} - r_{i}^{2} } \right) $$
(A112)
$$ I_{i} = {{\pi \left( {R_{i}^{4} - r_{i}^{4} } \right)} \mathord{\left/ {\vphantom {{\pi \left( {R_{i}^{4} - r_{i}^{4} } \right)} 4}} \right. \kern-0pt} 4} $$
(A113)

Appendix B: Geometric and physical parameters of the model

See Table 

Table 4 Geometrical dimensions of shaft elements

4,

Table 5 Physical parameters of disk elements

5,

Table 6 Parameters of inter-shaft bearing

6,

Table 7 Parameters of ESDFD

7 and

Table 8 Parameters of supports

8.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouyang, X., Cao, S. & Li, G. Nonlinear dynamics of a dual-rotor-bearing system with active elastic support dry friction dampers. Nonlinear Dyn 112, 7875–7907 (2024). https://doi.org/10.1007/s11071-024-09490-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09490-2

Keywords

Navigation