Skip to main content
Log in

The determinant representation of Ward soliton solutions and its dynamical behaviors

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this work, we constructed the multi-soliton solutions to the Ward equation with the help of the generalized Darboux transformation method. Importantly, we obtained the determinant representation of the Ward multi-soliton solutions with trivial and nontrivial scattering. All calculations indicate that the Darboux transformation method is an effective and straightforward way to generate the Ward solutions. These obtained determinantal solutions are particularly useful for analyzing the dynamical behaviors of the energy density functions of the Ward multi-soliton solutions. By investigating the energy density figures, we illustrated the nontrivial scattering properties of the Ward multi-soliton solutions. These results are meaningful for quantum field theory and could be utilized to provide an intuitive description of the particle interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Barone, A., Esposito, F., Magee, C., Scott, A.: Theory and applications of the sine-gordon equation. Riv. Nuovo Cimento 1(2), 227–267 (1971). https://doi.org/10.1007/BF02820622

    Article  Google Scholar 

  2. Schwarz, J.H.: Covariant field equations of chiral n= 2 d= 10 supergravity. Nuclear Phys. B 226(2), 269–288 (1983). https://doi.org/10.1016/0550-3213(83)90192-X

    Article  Google Scholar 

  3. Ward, R.S.: Soliton solutions in an integrable chiral model in 2+1 dimensions. J. Math. Phys. 29(2), 386–389 (1988). https://doi.org/10.1063/1.528078

    Article  MathSciNet  Google Scholar 

  4. Ablowitz, M.J., Chakravarty, S., Halburd, R.G.: Integrable systems and reductions of the self-dual Yang–Mills equations. J. Math. Phys. 44(8), 3147–3173 (2003). https://doi.org/10.1063/1.1586967

    Article  MathSciNet  Google Scholar 

  5. Bardeen, W.A.: Self-dual Yang–Mills theory, integrability and multiparton amplitudes. Prog. Theor. Phys. Suppl. 123(1), 1–8 (1996). https://doi.org/10.1143/PTPS.123.1

    Article  Google Scholar 

  6. Yang, C.N., Mills, R.L.: Conservation of isotopic spin and isotopic gauge invariance. Phys. Rev. 96(1), 191 (1954). https://doi.org/10.1103/PhysRev.96.191

    Article  MathSciNet  Google Scholar 

  7. Hell, A.: The strong couplings of massive Yang–Mills theory. J. High Energy Phys. 2022(3), 1–31 (2022). https://doi.org/10.1007/JHEP03(2022)167

    Article  MathSciNet  Google Scholar 

  8. Plansangkate, P.: Compactified twistor fibration and topology of ward unitons. J. Geom. Phys. 104, 1–18 (2016). https://doi.org/10.1016/j.geomphys.2016.01.011

    Article  MathSciNet  Google Scholar 

  9. Maas, A., Mufti, T.: Spectroscopic analysis of the phase diagram of Yang–Mills–Higgs theory. Phys. Rev. D 91(11), 113011 (2015). https://doi.org/10.1103/PhysRevD.91.113011

    Article  Google Scholar 

  10. Ward, R.S.: Nontrivial scattering of localized solitons in a (2+1)-dimensional integrable system. Phys. Lett. A 208, 203–208 (1995). https://doi.org/10.1016/0375-9601(95)00782-X

    Article  MathSciNet  Google Scholar 

  11. Ward, R.S.: Classical solutions of the chiral model, unitons, and holomorphic vector bundles. Commun. Math. Phys. 128(2), 319–332 (1990). https://doi.org/10.1007/bf02108784

    Article  MathSciNet  Google Scholar 

  12. Zhu, X.J.: Holomorphic vector bundles corresponding to some soliton solutions of the ward equation. Math. Phys. Anal. Geom. 18, 1–11 (2015). https://doi.org/10.1007/s11040-015-9192-7

    Article  MathSciNet  Google Scholar 

  13. Getmanov, B., Sutcliffe, P.M.: Yang–Mills–Higgs soliton dynamics in 2+ 1 dimensions. Theoret. Math. Phys. 117(3), 1375–1384 (1998). https://doi.org/10.1007/BF02557176

    Article  MathSciNet  Google Scholar 

  14. Tafel, J.: Yang–Mills–Higgs equations with nonhomogeneous boundary conditions. Class. Quant. Gravity 14(1A), 335 (1997). https://doi.org/10.1088/0264-9381/14/1A/026

    Article  MathSciNet  Google Scholar 

  15. Vachaspati, T.: Construction of non-abelian electric strings. Phys. Rev. D 107(9), 096015 (2023). https://doi.org/10.1103/PhysRevD.107.096015

    Article  MathSciNet  Google Scholar 

  16. Ioannidou, T.: Soliton solutions and nontrivial scattering in an integrable chiral model in (2+1) dimensions. J. Math. Phys. 37(7), 3422–3441 (1996). https://doi.org/10.1063/1.531573

    Article  MathSciNet  Google Scholar 

  17. Ioannidou, T., Manton, N.: The energy of scattering solitons in the ward model. Proc. Roy. Soc. Sect. A 461(2059), 1965–1973 (2005). https://doi.org/10.1098/rspa.2005.1451

    Article  MathSciNet  Google Scholar 

  18. Zakharov, V.E., Mikhailov, A.V.: Example of nontrivial interaction of solitons in twodimensional classical field theory. Pisma Zh. Eksp. Teor. Fiz. 27, 42–46 (1978)

    Google Scholar 

  19. Forgács, P., Horváth, Z., Palla, L.: Solution-generating technique for self-dual monopoles. Nuclear Phys. B 229(1), 77–104 (1983). https://doi.org/10.1016/0550-3213(83)90354-1

    Article  MathSciNet  Google Scholar 

  20. Uhlenbeck, K.: Harmonic maps into lie groups: classical solutions of the chiral model. J. Differ. Geom. 30(1), 1–50 (1989). https://doi.org/10.4310/jdg/1214443286

    Article  MathSciNet  Google Scholar 

  21. Burstall, F.E., Guest, M.A.: Harmonic two-spheres in compact symmetric spaces, revisited. Math. Ann. 309, 541–572 (1997). https://doi.org/10.1007/s002080050127

    Article  MathSciNet  Google Scholar 

  22. Wood, J.C.: Explicit construction and parametrization of harmonic two-spheres in the unitary group. Proc. Lond. Math. Soc. 3(3), 608–624 (1989). https://doi.org/10.1112/plms/s3-58.3.608

    Article  MathSciNet  Google Scholar 

  23. Schimming, R., Mundt, E.: Constant potential solutions of the Yang–Mills equation. J. Math. Phys. 33(12), 4250–4254 (1992). https://doi.org/10.1063/1.529825

    Article  MathSciNet  Google Scholar 

  24. Sutcliffe, P.: Nontrivial soliton scattering in an integrable chiral model in (2+ 1)-dimensions. J. Math. Phys. 33(6), 2269–2278 (1992). https://doi.org/10.1063/1.529599

    Article  MathSciNet  Google Scholar 

  25. Ioannidou, T., Ward, R.S.: Conserved quantities for integrable chiral equations in 2+ 1 dimensions. Phys. Lett. A 208(3), 209–213 (1995). https://doi.org/10.1016/0375-9601(95)00781-W

    Article  MathSciNet  Google Scholar 

  26. Anand, C.K.: Ward solitons. Geom. Topol. 1(1), 9–20 (1997). https://doi.org/10.2140/gt.1997.1.9

    Article  MathSciNet  Google Scholar 

  27. Anand, C.K.: Ward solitons II: exact solutions. Can. J. Math. 50(6), 1119–1137 (1998). https://doi.org/10.4153/CJM-1998-054-3

    Article  MathSciNet  Google Scholar 

  28. Uhlenbeck, K.: On the connection between harmonic maps and the self-dual yang-mills and the Sine–Gordon equations. J. Geom. Phys. 8(1–4), 283–316 (1992). https://doi.org/10.1016/0393-0440(92)90053-4

    Article  MathSciNet  Google Scholar 

  29. Villarroel, J.: The inverse problem for Ward’s system. Stud. Appl. Math. 83(3), 211–222 (1990). https://doi.org/10.1002/sapm1990833211

    Article  MathSciNet  Google Scholar 

  30. Fokas, A.S., Ioannidou, T.A.: The inverse problem for the Ward equation and for the (2+1) chiral model. Commun. Appl. Anal. 5, 235 (2001). https://doi.org/10.48550/arXiv.hep-th/9806035

    Article  MathSciNet  Google Scholar 

  31. Dai, B., Terng, C.L.: Bäcklund transformations, ward solitons, and unitons. J. Differ.l Geom. 75(1), 57–108 (2007). https://doi.org/10.4310/jdg/1175266254

    Article  Google Scholar 

  32. Dunajski, M., Manton, N.: Reduced dynamics of ward solitons. Nonlinearity 18(4), 1677 (2005). https://doi.org/10.1088/0951-7715/18/4/014

    Article  MathSciNet  Google Scholar 

  33. Wu, D.: The Cauchy problem of the ward equation. J. Funct. Anal. 256(1), 215–257 (2009). https://doi.org/10.1063/1.3013120

    Article  MathSciNet  Google Scholar 

  34. Benincasa, G.B., Halburd, R.: Bianchi permutability for the anti-self-dual Yang–Mills equations. Stud. Appl. Math. 137(1), 110–122 (2016). https://doi.org/10.1111/sapm.12118

    Article  MathSciNet  Google Scholar 

  35. Huang, S.C.: On soliton solutions of the anti-self-dual yang-mills equations from the perspective of integrable systems (2021). arXiv preprint arXiv:2112.10702

  36. Li, S.S., Qu, C.Z., Yi, X.X., Zhang, D.J.: Cauchy matrix approach to the SU (2) self-dual Yang–Mills equation. Stud. Appl. Math. 148(4), 1703–1721 (2022). https://doi.org/10.1111/sapm.12488

    Article  MathSciNet  Google Scholar 

  37. Gilson, C.R., Hamanaka, M., Huang, S.C., Nimmo, J.C.: Soliton solutions of noncommutative anti-self-dual Yang–Mills equations. J. Phys. A 53(40), 404002 (2020). https://doi.org/10.1088/1751-8121/aba72e

    Article  MathSciNet  Google Scholar 

  38. Hamanaka, M., Huang, S.C.: New soliton solutions of anti-self-dual Yang–Mills equations. J. High Energy Phys. 2020(10), 1–18 (2020). https://doi.org/10.1007/jhep10(2020)101

    Article  MathSciNet  Google Scholar 

  39. Hamanaka, M., Huang, S.C.: Multi-soliton dynamics of anti-self-dual gauge fields. J. High Energy Phys. 2022(1), 1–19 (2022). https://doi.org/10.1007/jhep01(2022)039

    Article  MathSciNet  Google Scholar 

  40. Stalin, S., Senthilvelan, M., Lakshmanan, M.: Energy-sharing collisions and the dynamics of degenerate solitons in the nonlocal Manakov system. Nonlinear Dyn. 95, 1767–1780 (2019). https://doi.org/10.1007/s11071-018-4658-3

    Article  Google Scholar 

  41. Wang, M.M., Chen, Y.: Dynamic behaviors of general n-solitons for the nonlocal generalized nonlinear Schrödinger equation. Nonlinear Dyn. 104(3), 2621–2638 (2021). https://doi.org/10.1007/s11071-021-06421-3

    Article  Google Scholar 

  42. Iqbal, M., Seadawy, A.R., Lu, D.C., Zhang, Z.D.: Structure of analytical and symbolic computational approach of multiple solitary wave solutions for nonlinear Zakharov–Kuznetsov modified equal width equation. Numer. Methods Part. Differ. Equ. (2023). https://doi.org/10.1002/num.23033

    Article  MathSciNet  Google Scholar 

  43. Seadawy, A.R., Iqbal, M., Lu, D.C.: Propagation of kink and anti-kink wave solitons for the nonlinear damped modified Korteweg-de Vries equation arising in ion-acoustic wave in an unmagnetized collisional dusty plasma. Physica A 544, 123560 (2020). https://doi.org/10.1016/j.physa.2019.123560

    Article  Google Scholar 

  44. Seadawy, A.R., Iqbal, M.: Propagation of the nonlinear damped Korteweg-de Vries equation in an unmagnetized collisional dusty plasma via analytical mathematical methods. Math. Methods Appl. Sci. 44(1), 737–748 (2021). https://doi.org/10.1002/mma.6782

    Article  MathSciNet  Google Scholar 

  45. Gu, C.H., Hu, H.S., Zhou, Z.X.: Darboux Transformation in Soliton Theory and Its Geometric Applications. Shanghai Scientific and Technical Publishers, Shanghai (1999)

    Google Scholar 

  46. Chen, D.Y.: Introduction to Solitons. Science Press, Beijing (2006)

    Google Scholar 

  47. Li, Y.S.: Solitons and Integrable Systems. Shanghai Science and Technology Education Press, Shanghai (1999)

    Google Scholar 

  48. Matveev, V.B., Salle, M.A.: Darboux Transformations and Solitons. Springer, Berlin (1991)

  49. Guo, B.L., Ling, L.M., Liu, Q.P.: Nonlinear Schrödinger equation: generalized darboux transformation and rogue wave solutions. Phys. Rev. E 85(2), 026607 (2012). https://doi.org/10.1103/physreve.85.026607

    Article  Google Scholar 

  50. Ling, L.M., Feng, B.F., Zhu, Z.N.: Multi-soliton, multi-breather and higher order rogue wave solutions to the complex short pulse equation. Physica D 327, 13–29 (2016). https://doi.org/10.1016/j.physd.2016.03.012

    Article  MathSciNet  Google Scholar 

  51. Zhang, X.E., Ling, L.M.: Asymptotic analysis of high-order solitons for the Hirota equation. Physica D 426, 132982 (2021). https://doi.org/10.1016/j.physd.2021.132982

    Article  MathSciNet  Google Scholar 

Download references

Funding

Liming Ling is supported by the National Natural Science Foundation of China (No.12122105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honghao Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest with other people or organizations that may inappropriately influence the author’s work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Proof of Theorem 1

Proof

According to the Lax pair of the Ward equation, we can obtain that \(\textbf{U}=\left[ (\lambda \partial _x-\partial _u) {\pmb \Psi }\right] {\pmb \Psi }^{-1}\). Assuming that \(\textbf{U}\) is independent of \(\lambda \). Set the Darboux transformation as \({\pmb \Psi }_{1}=\textbf{T}_1{\pmb \Psi }\), we hope that \({\pmb \Psi }_{1}\) satisfies the same equation as system (5). Based on the system (5), we have \(\textbf{T}_1[(\lambda \partial _x-\partial _u) {\pmb \Psi }]=\textbf{T}_1\textbf{U}{\pmb \Psi }\), which can be used to derive the following formulas

$$\begin{aligned} \begin{aligned}&\textbf{T}_1[(\lambda \partial _x-\partial _u) {\pmb \Psi }]=\textbf{T}_1\textbf{U}{} \textbf{T}_1^{-1}{} \textbf{T}_1{\pmb \Psi },\\&\textbf{T}_1[(\lambda \partial _x-\partial _u) {\pmb \Psi }]+[(\lambda \partial _x-\partial _u)\textbf{T}_1]{\pmb \Psi }\\&\quad =\textbf{T}_1\textbf{U}{} \textbf{T}_1^{-1}{} \textbf{T}_1{\pmb \Psi }+[(\lambda \partial _x-\partial _u)\textbf{T}_1]{\pmb \Psi },\\&(\lambda \partial _x-\partial _u)\textbf{T}_1{\pmb \Psi }\\&\quad =\textbf{T}_1\textbf{U}{} \textbf{T}_1^{-1}{\pmb \Psi }_1+[(\lambda \partial _x\textbf{T}_1-\partial _u\textbf{T}_1)\textbf{T}_1^{-1}]\textbf{T}_1{\pmb \Psi },\\&(\lambda \partial _x-\partial _u){\pmb \Psi }_1\\&\quad =\textbf{T}_1\textbf{U}{} \textbf{T}_1^{-1}{\pmb \Psi }_1+[(\lambda \partial _x\textbf{T}_1-\partial _u\textbf{T}_1)\textbf{T}_1^{-1}]\textbf{T}_1{\pmb \Psi },\\&(\lambda \partial _x-\partial _u){\pmb \Psi }_1\\&\quad =[\textbf{T}_1\textbf{U}{} \textbf{T}_1^{-1}+(\lambda \partial _x\textbf{T}_1-\partial _u\textbf{T}_1)\textbf{T}_1^{-1}]{\pmb \Psi }_1. \end{aligned} \end{aligned}$$

Take \(\textbf{U}_1=\textbf{T}_1\textbf{U}{} \textbf{T}_1^{-1}+(\lambda \partial _x \textbf{T}_{1}-\partial _u \textbf{T}_{1})\textbf{T}_1^{-1}\), then \({\pmb \Psi }_{1}\) and \(\textbf{U}_1\) satisfy the new system (11). Next, we need to prove that \(\textbf{U}_1\) is independent of \(\lambda \).

According to the form of \(\textbf{T}_1\) and \(\textbf{T}_1^{-1}\), we know that \(\textbf{U}_1\) may have singularities at \(\lambda ={\lambda _1}^*\) and \(\lambda ={\lambda _1}\), the residue of \(\textbf{U}_1\) at \(\lambda =\lambda _1\) and \(\lambda ={\lambda _1}^*\) should be 0, which is equivalent to

$$\begin{aligned} \underset{\lambda =\lambda _1}{\text {Res}}{} \textbf{U}_1 =&-({\lambda _1}^*-\lambda _1)\Big [-\lambda _1({\mathbb {I}}-\textbf{P}_1)\textbf{P}_{1,x}\\&+({\mathbb {I}}-\textbf{P}_1) \textbf{P}_{1,u}+({\mathbb {I}}-\textbf{P}_1)\textbf{U}(\lambda _1)\textbf{P}_1\Big ]\\ =&({\lambda _1}^*-\lambda _1)\left( {\mathbb {I}}-\frac{ |\textbf{y}_1\rangle \langle \textbf{y}_1|}{ \langle \textbf{y}_1 \mid \textbf{y}_1 \rangle }\right) \\&\Big [\lambda _1 |\textbf{y}_1\rangle \left( \frac{ \langle \textbf{y}_1|}{ \textbf{y}_1 \mid \textbf{y}_1 \rangle }\right) _x\\&- |\textbf{y}_1\rangle \left( \frac{ \langle \textbf{y}_1|}{\textbf{y}_1 \mid \textbf{y}_1 \rangle }\right) _u\Big ] =0,\\ \underset{\lambda =\lambda _1^*}{\text {Res}}{} \textbf{U}_1 =&-({\lambda _1}-\lambda _1^*)\big [\lambda _1^*\textbf{P}_{1,x}-\textbf{P}_{1,u}\\&+\textbf{P}_1\textbf{U}(\lambda _1^*)\Big ]({\mathbb {I}}-\textbf{P}_1)\\ =&-({\lambda _1}^*-\lambda _1)\left( {\mathbb {I}}-\frac{ |\textbf{y}_1\rangle \langle \textbf{y}_1|}{ \langle \textbf{y}_1 \mid \textbf{y}_1 \rangle }\right) \\&\left[ \lambda _1^*\left( \frac{ \langle \textbf{y}_1|}{ \textbf{y}_1 \mid \textbf{y}_1 \rangle }\right) _x |\textbf{y}_1\rangle -\left( \frac{ \langle \textbf{y}_1|}{ \textbf{y}_1 \mid \textbf{y}_1 \rangle }\right) _u |\textbf{y}_1\rangle \right] \\ =&0. \end{aligned}$$

Then we consider the asymptotics as \(\lambda \rightarrow \infty \). Since \(\textbf{U}\) is independent of \(\lambda \), we get \(\textbf{T}_1\textbf{U}{} \textbf{T}_1^{-1}\) is independent of \(\lambda \). For \(\lambda \rightarrow \infty \), by taking the limit of \((\lambda \partial _x \textbf{T}_{1}-\partial _u \textbf{T}_{1})\textbf{T}_1^{-1}\), we obtain that \({\textbf{U}}_1={\mathcal {O}}(\lambda ^{-1})\) as \(\lambda \rightarrow \infty \). So \(\textbf{U}_1\) is holomorphic at \(\lambda \in {\mathbb {C}} \cup \lbrace \infty \rbrace \). By Liouville theorem, we can get \(\textbf{U}_1\) is independent of \(\lambda \). Similarly, we can prove that \(\textbf{V}_1=(\lambda \partial _v \textbf{T}_{1}-\partial _x \textbf{T}_{1})\textbf{T}_1^{-1}+\textbf{T}_1\textbf{V}{} \textbf{T}_1^{-1}\) is independent of \(\lambda \).

Finally, since \(\textbf{U},\textbf{V} \in \textbf{u}(n)\), so \(\textbf{U},\textbf{V}\) have the following symmetry,

$$\begin{aligned} \textbf{U}^{\dagger }(x,y,t;\lambda ^*)= & {} -\textbf{U}(x,y,t;\lambda ), \\ \quad \textbf{V}^{\dagger }(x,y,t;\lambda ^*)= & {} -\textbf{V}(x,y,t;\lambda ). \end{aligned}$$

We need to prove that \(\textbf{U}_1\) and \(\textbf{V}_1\) have the same symmetry as \(\textbf{U}\) and \(\textbf{V}\). For \(\textbf{U}_1=\textbf{T}_1\textbf{U}{} \textbf{T}_1^{-1}+(\lambda \partial _x \textbf{T}_{1}-\partial _u \textbf{T}_{1})\textbf{T}_1^{-1}\), we have

$$\begin{aligned} \begin{aligned} \textbf{U}_1^{\dagger }(\lambda ^*)&=\left[ \textbf{T}_1\textbf{U}{} \textbf{T}_1^{-1}+(\lambda \partial _x \textbf{T}_{1}-\partial _u \textbf{T}_{1})\textbf{T}_1^{-1}\right] ^{\dagger }\\&=[\textbf{T}_1^{-1}]^{\dagger }{} \textbf{U}^{\dagger }{} \textbf{T}_1^{\dagger }+(\lambda \textbf{T}_{1,x}{} \textbf{T}_1^{-1})^{\dagger }-(\textbf{T}_{1,u}{} \textbf{T}_1^{-1})^{\dagger }\\&=\textbf{T}_1\textbf{U}^{\dagger }{} \textbf{T}_1^{-1}+\lambda \textbf{T}_{1}(\textbf{T}_1^{-1})_x-\textbf{T}_{1}(\textbf{T}_1^{-1})_u\\&=-\textbf{T}_1\textbf{U}{} \textbf{T}_1^{-1}-\lambda \textbf{T}_{1,x}{} \textbf{T}_1^{-1}-\textbf{T}_{1,u}{} \textbf{T}_1^{-1}\\&=-\textbf{U}_1(\lambda ). \end{aligned} \end{aligned}$$

Then we have \(\textbf{U}_1 \in \textbf{u}(n)\). Similarly, we get that \(\textbf{V}_1 \in \textbf{u}(n)\). Therefore, it is proved that \(\textbf{U}_1, \textbf{V}_1\) share the same form and properties with \(\textbf{U}, \textbf{V}\), respectively. Hence, we verify that Darboux transformation \({\pmb \Psi }_{1}=\textbf{T}_1{\pmb \Psi }\) is a gauge transformation that can be used to construct exact solutions. \(\square \)

Appendix B. Proof of Theorem 2

Proof

According to the Theorem 1, we can write the n-fold Darboux matrix as:

$$\begin{aligned} \textbf{T}^{[n]}(x,y,t;\lambda )= & {} \textbf{T}_{n}(x,y,t;\lambda )\textbf{T}_{n-1}(x,y,t;\lambda )\\{} & {} \quad \cdots \textbf{T}_{2}(x,y,t;\lambda )\textbf{T}_{1}(x,y,t;\lambda ). \end{aligned}$$

It is obvious that \(\textbf{T}^{[n]}(x,y,t;\lambda )\) has singularities at \(\lambda ={\lambda _i}^*\), so \(\textbf{T}^{[n]}(x,y,t;\lambda )\) can be rewritten as the following form,

$$\begin{aligned} \textbf{T}^{[n]}(x,y,t;\lambda )= {\mathbb {I}}+\sum \limits _{i=1}^{n}\frac{\textbf{A}_i(x,y,t)}{\lambda -\lambda _i^*}, \end{aligned}$$

where rank\((\textbf{A}_i(x,y,t))=1\) which can be derived from the Theorem 1. Then we can assume \(\textbf{A}_i(x,y,t)= |\textbf{x}_i\rangle \langle \textbf{y}_i|\), where \( |\textbf{x}_i\rangle \) is a column vector, \( \langle \textbf{y}_i|\) is a row vector.

Considering the \(\textbf{U}(n)\)-real condition \( \textbf{T}^{[n]}(x,y,t;\lambda )[\textbf{T}^{[n]}(x,y,t;{\lambda }^*)]^{\dagger }={\mathbb {I}} \) and its Taylor expansion at \(\lambda =\lambda _j\), then we obtain

$$\begin{aligned} \left( {\mathbb {I}}+\sum \limits _{i=1}^{n}\frac{|\textbf{x}_i\rangle \langle \textbf{y}_i|}{\lambda _j-{\lambda _i}^*}\right) |\textbf{y}_j\rangle =0,\,\, |\textbf{y}_j\rangle ={\pmb \Psi }(x,y,t;\lambda _j){\textbf{q}}_{j}. \end{aligned}$$

Based on Ker\((\textbf{T}^{[n]}(x,y,t;\lambda _j))={\pmb \Psi }(x,y,t; \lambda _j)\textbf{q}_{j}\), then we get

$$\begin{aligned} |\textbf{y}_j\rangle =\sum \limits _{i=1}^{n}\frac{\langle \textbf{y}_i| \textbf{y}_j\rangle }{{\lambda _i}^*-\lambda _j}|\textbf{x}_i\rangle , j=1,2,\cdots , n, \end{aligned}$$

which can be represented as the matrix form:

$$\begin{aligned} (|\textbf{y}_1\rangle , |\textbf{y}_2\rangle , \cdots ,| \textbf{y}_n\rangle )=(|\textbf{x}_1\rangle , |\textbf{x}_2\rangle , \cdots , |\textbf{x}_n\rangle )\textbf{M}, \end{aligned}$$

where \(\textbf{M}=\left( \frac{\left\langle \textbf{y}_i \mid \textbf{y}_j\right\rangle }{\lambda _i^*-\lambda _j}\right) _{1 \le i, j \le n}.\) Therefore, we have

$$\begin{aligned} \textbf{T}^{[n]}(x,y,t;\lambda )={\mathbb {I}}+\textbf{Y}{} \textbf{M}^{-1}{} \textbf{D}^{-1}{} \textbf{Y}^{\dagger }, \end{aligned}$$

where \(\textbf{D}={\text {diag}}\left( \lambda -{\lambda _1}^*, \lambda -{\lambda _2}^*, \cdots , \lambda -{\lambda _n}^*\right) \), \(\textbf{Y}=\left[ \left| \textbf{y}_1\right\rangle , \left| \textbf{y}_2\right\rangle , \cdots , \left| \textbf{y}_n\right\rangle \right] .\) \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, L., Yang, H. The determinant representation of Ward soliton solutions and its dynamical behaviors. Nonlinear Dyn 112, 7417–7432 (2024). https://doi.org/10.1007/s11071-024-09453-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09453-7

Keywords

Navigation