Skip to main content
Log in

Bifurcations, chaotic behavior, sensitivity analysis and new optical solitons solutions of Sasa-Satsuma equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The Sasa-Satsuma (SS) equation is studied in this research study using ideas from planar dynamical theory and the beta differential operator. The SS equation is converted into two ordinary differential equations by applying the Galilean transformation. The work is since concentrated on examining the system’s bifurcation points and equilibrium points. The sensitivity of the linked system to its initial values is demonstrated via graphical representations. In order to examine chaos and phase transitions, the system is changed by adding the periodic function \(\cos (\omega t)\). This modification is done as part of this study. Specific optical soliton solutions are illustrated using the first integral technique. Additionally, for various combinations of frequency and amplitude values, numerical simulations are demonstrated the existence of unusual chaotic attractors, such as candy-type, torus-type, and multiscroll chaotic structures. The impact of the beta differential operator on the amplitude of various optical solitons, such as bright, dark, W-shaped, and breather solitons, are also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

\footnotesize Figure 1
\footnotesize Figure 2
\footnotesize Figure 3
\footnotesize Figure 4
\footnotesize Figure 5
\footnotesize Figure 6
\footnotesize Figure 7
\footnotesize Figure 8

Similar content being viewed by others

Data availibility

No data were used in this article.

References

  1. Schiesser, W.E.: Method of lines PDE analysis in biomedical science and engineering. Wiley (2016)

  2. Lagergren, J.H., Nardini, J.T., Michael Lavigne, G., Rutter, E.M., Flores, K.B.: Learning partial differential equations for biological transport models from noisy spatio-temporal data. Proc. R. Soc. A 476(2234), 20190800 (2020)

    MathSciNet  Google Scholar 

  3. Fang, Z., Gao, C.: Lyapunov function partial differential equations for chemical reaction networks: some special cases. SIAM J. Appl. Dyn. Syst. 18(2), 1163–1199 (2019)

    MathSciNet  Google Scholar 

  4. Ahmad, S., Mahmoud, E.E., Saifullah, S., Ullah, A., Ahmad, S., Akgul, A., El Din, S.M.: Newwaves solutions of a nonlinear Landau–Ginzburg–Higgs equation: the Sardar-subequation and energy balance approaches. Results Phys. 51, 106736 (2023)

    Google Scholar 

  5. Ahmad, S., Ullah, A., Ahmad, S., Saifullah, S., Shokri, A.: Periodic solitons of Davey Stewartson Kadomtsev Petviashvili equation in (4+ 1)-dimension. Results Phys. 50, 106547 (2023)

    Google Scholar 

  6. Ahmad, S., Saifullah, S., Khan, A., Wazwaz, A.M.: Resonance, fusion and fission dynamics of bifurcation solitons and hybrid rogue wave structures of Sawada-Kotera equation. Commun. Nonlinear Sci. Numer. Simul. 119, 107117 (2023)

    MathSciNet  Google Scholar 

  7. Tang, C., Yang, N., Yan, H., Yan, X.: The new second-order single oriented partial differential equations for optical interferometry fringes with high density. Opt. Lasers Eng. 51(6), 707–715 (2013)

    Google Scholar 

  8. Wang, K.-J., Liu, J.-H., Wu, J.: Soliton solutions to the Fokas system arising in monomode optical fibers. Optik 251, 168319 (2022)

    Google Scholar 

  9. Adem, A.R., Ntsime, B.P., Biswas, A., Khan, S., Alzahrani, A.K., Belic, M.R.: Stationary optical solitons with nonlinear chromatic dispersion for Lakshmanan–Porsezian–Daniel model having Kerr law of nonlinear refractive index. Ukr. J. Phys. Opt. 22(2), 83–86 (2021)

    Google Scholar 

  10. Yıldırım, Y., Biswas, A., Guggilla, P., Khan, S., Alshehri, H.M., Belic, M.R.: Optical solitons in fibre Bragg gratings with third-and fourth-order dispersive reflectivities. Ukr. J. Phys. Opt. 22(4), 239–254 (2021)

    Google Scholar 

  11. Yildrim, Y., Biswas, A., Dakova, A., Guggilla, P., Khan, S., Alshehri, H.M., Belic, M.R.: Cubic-quartic optical solitons having quadratic-cubic nonlinearity by sine-Gordon equation approach. Ukr. J. Phys. Opt. 22(4), 255 (2021)

    Google Scholar 

  12. Zayed, E.M.E., Shohib, R., Alngar, M.E.M., Biswas, A., Yıldırım, Y., Dakova, A., Alshehri, H.M., Belic, M.R.: Optical solitons in the Sasa-Satsuma model with multiplicative noise via Itô calculus. Ukr. J. Phys. Opt. 23(1), 9 (2022)

    Google Scholar 

  13. Al Qarni, A.A., Mohammed, A.S.H.F., Bodaqah, A.M., Alshaery, A.A., Bakodah, H.O.: Dark and singular cubic-quartic optical solitons with Lakshmanan–Porsezian–Daniel equation by the improved Adomian decomposition scheme. Ukr. J. Phys. Opt. 24(1), 46 (2023)

    Google Scholar 

  14. Kumar, R., Kumar, R., Bansal, A., Biswas, A., Yildirim, Y., Moshokoa, S.P., Asiri, A.: Optical solitons and group invariants for Chen-Lee-Liu equation with time-dependent chromatic dispersion and nonlinearity by Lie symmetry. Ukr. J. Phys. Opt. 24(4), 4021 (2023)

    Google Scholar 

  15. Elsherbeny, A.M., Mirzazadeh, M., Arnous, A.H., Biswas, A., Yildirim, Y., Dakova, A., Asiri, A.: Optical bullets and domain walls with cross spatio-dispersion and having kudryashov’s form of self-phase modulation. Contemp. Math. 4(3), 505 (2023)

    Google Scholar 

  16. Zayed, E.M.E., Gepreel, K.A., El-Horbaty, M., Biswas, A., Yildirim, Y., Triki, H., Asiri, A.: Optical solitons for the dispersive concatenation model. Contemp. Math. 4, 592–611 (2023)

    Google Scholar 

  17. Adem, A.R., Biswas, A., Yildirim, Y., Asiri, A.: Implicit quiescent optical solitons for the dispersive concatenation model with nonlinear chromatic dispersion by Lie symmetry. Contemp. Math. 4, 666–674 (2023)

    Google Scholar 

  18. Elsherbeny, A.M., Mirzazadeh, M., Arnous, A.H., Biswas, A., Yildirim, Y., Dakova, A., Asiri, A.: Optical bullets and domain walls with cross spatio-dispersion and having Kudryashov’s form of self-phase modulation. Contemp. Math. 4, 505–517 (2023)

    Google Scholar 

  19. Wang, M.-Y., Biswas, A., Yildirim, Y., Alshomrani, A.S.: Optical solitons for the dispersive concatenation model with power-law nonlinearity by the complete discriminant approach. Contemp. Mathe. 4, 1249–1259 (2023)

    Google Scholar 

  20. Jawad, A.J.M., Abu-AlShaeer, M.J.: Highly dispersive optical solitons with cubic law and cubic-quinticseptic law nonlinearities by two methods. Al-Rafidain J. Eng. Sci. 1(1), 1–8 (2023)

    Google Scholar 

  21. Jawad, A., Biswas, A.: Solutions of resonant nonlinear Schrödinger’s equation with exotic non-Kerr law nonlinearities. Al-Rafidain J. Eng. Sci. 2, 43–50 (2024)

    Google Scholar 

  22. Anjan, B., Yakup, Y., Luminita, M., Catalina, I., Lucian, G.P., Asim, A.: Optical solitons and complexitons for the concatenation model in birefringent fibers. Ukr. J. Phys. Opt. 24(4), 4060 (2023)

    Google Scholar 

  23. Ma, S.R., Em, A.M., Anjan, B., Yakup, Y., Houria, T., Luminita, M., Catalina, I., Lucian, G.P., Asim, A.: Optical solitons in magneto-optic waveguides for the concatenation model. Ukr. J. Phys. Opt. 24(3), 248 (2023)

    Google Scholar 

  24. González-Gaxiola, O., Biswas, A., Ruiz de Chavez, J., Asiri, A.: Bright and dark optical solitons for the concatenation model by the Laplace-Adomian decomposition scheme. Ukr. J. Phys. Opt. 24(3), 222 (2023)

    Google Scholar 

  25. Ma, S.R., Em, A.M., Anjan, B., Yakup, Y., Houria, T., Luminita, M., Catalina, I., Lucian, G.P., Asim, A.: Optical solitons in magneto-optic waveguides for the concatenation model. Ukr. J. Phys. Opt. 24(3), 248 (2023)

    Google Scholar 

  26. Zayed, E.M.E., Alngar, M.E.M., Shohib, R., Biswas, A.: Highly dispersive solitons in optical couplers with metamaterials having Kerr law of nonlinear refractive index. Ukr. J. Phys. Opt 25(1), 01001 (2024)

    Google Scholar 

  27. Ahmad, S., Ahmad, S., Khan, M.A., Ullah, A.: Exploration of optical solitons of a hyperbolic nonlinear Schrödinger equation. Opt. Quantum Electron. 56(1), 2 (2024)

    Google Scholar 

  28. Khan, A., Saifullah, S., Ahmad, S., Khan, M.A., Rahman, M.: Dynamical properties and new optical soliton solutions of a generalized nonlinear Schrödinger equation. Eur. Phys. J. Plus 138(11), 1059 (2023)

    Google Scholar 

  29. Ahmad, S., Hameed, A., Ahmad, S., Ullah, A., Akbar, M.: Stability analysis and some exact solutions of a particular equation from a family of a nonlinear Schrödinger equation with unrestricted dispersion and polynomial nonlinearity. Opt. Quantum Electron. 55(8), 666 (2023)

    Google Scholar 

  30. Song, C., Fang, R.-R., Zhang, H.-L., Zhao, H.-Q.: The exact solutions to a new type space reverse nonlocal Lakshmanan–Porserzian–Daniel equation. Nonlinear Dyn. 112(1), 591–599 (2023)

    Google Scholar 

  31. Zhou, T., Zhao, H.-Q.: Integrability and exact solutions for a nonlocal matrix nonlinear Schrödinger equation with self-induced PT-symmetric potentials. Nonlinear Dyn. 111(13), 12447–12459 (2023)

    Google Scholar 

  32. Zhao, H.-Q., Yuan, J., Zhu, Z.-N.: Integrable semi-discrete Kundu-Eckhaus equation: Darboux transformation, breather, rogue wave and continuous limit theory. J. Nonlinear Sci. 28, 43–68 (2018)

    MathSciNet  Google Scholar 

  33. Zhao, H.-Q., Yuan, J.: A semi-discrete integrable multi-component coherently coupled nonlinear Schrödinger system. J. Phys. A: Math. Theor. 49(27), 275204 (2016)

    Google Scholar 

  34. Xu, C., Dan, M., Pan, Y., Aouiti, C., Yao, L.: Exploring bifurcation in a fractional-order predator-prey system with mixed delays. J. Appl. Anal. Comput. 13, 1119–1136 (2023)

    MathSciNet  Google Scholar 

  35. Xu, C., Mu, D., Liu, Z., Pang, Y., Aouiti, C., Tunc, O., Ahmad, S., Zeb, A.: Bifurcation dynamics and control mechanism of a fractional-order delayed Brusselator chemical reaction model. Match 89(1), 73 (2023)

    Google Scholar 

  36. Li, P., Lu, Y., Xu, C., Ren, J.: Insight into Hopf bifurcation and control methods in fractional order bam neural networks incorporating symmetric structure and delay. Cognit. Comput. 15(6), 1825–1867 (2023)

    Google Scholar 

  37. Khalil, R., Horani, M.A., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    MathSciNet  Google Scholar 

  38. Atangana, A., Alqahtani, R.T.: Modelling the spread of river blindness disease via the Caputo fractional derivative and the beta-derivative. Entropy 18(2), 40 (2016)

    Google Scholar 

  39. Vanterler, J., Sousa, D.A.C., Capelas, E., Oliveira, D.E.: A new truncated M-fractional derivative type unifying some fractional derivative types with classical properties. Int. J. Anal. Appl. 16(1), 83–96 (2018)

    Google Scholar 

  40. Yusuf, A., İnç, M., Baleanu, D.: Optical solitons with M-truncated and beta derivatives in nonlinear optics. Front. Phys. 7, 126 (2019)

    Google Scholar 

  41. Tasnim, F., Akbar, M.A., Osman, M.S.: The extended direct algebraic method for extracting analytical solitons solutions to the cubic nonlinear Schrödinger equation involving beta derivatives in space and time. Fract. Fract. 7(6), 426 (2023)

  42. Yalçınkaya, İ, Ahmad, H., Tasbozan, O., Kurt, A.: Soliton solutions for time fractional ocean engineering models with beta derivative. J. Ocean Eng. Sci. 7(5), 444–448 (2022)

    Google Scholar 

  43. Ou, W., Changjin, X., Cui, Q., Liu, Z., Pang, Y., Farman, M., Ahmad, S., Zeb, A.: Mathematical study on bifurcation dynamics and control mechanism of tri-neuron BAM neural networks including delay. Math. Methods Appl. Sci. (2023). https://doi.org/10.1002/mma.9347

    Article  Google Scholar 

  44. Xu, C. J., Cui, Q.Y., Liu, Z.X., Pan, Y. L., Cui, X. H., Ou, Wei, Rahman, M., Farman, M., Ahmad, S., Zeb, A.: Extended hybrid controller design of bifurcation in a delayed chemostat model. MATCH Commun. Math. Comput. Chem. 90(3), 609–648 (2023)

    Google Scholar 

  45. Xu, C., Cui, X., Li, P., Yan, J., Yao, L.: Exploration on dynamics in a discrete predator-prey competitive model involving feedback controls. J. Biol. Dyn. 17(1), 2220349 (2023)

    MathSciNet  Google Scholar 

  46. Mua, D., Xub, C., Liua, Z., Panga, Y.: Further insight into bifurcation and hybrid control tactics of a chlorine dioxide-iodine-malonic acid chemical reaction model incorporating delays. MATCH Commun. Math. Comput. Chem 89(3), 529–566 (2023)

    Google Scholar 

  47. Tang, L.: Bifurcation analysis and multiple solitons in birefringent fibers with coupled Schrödinger-Hirota equation. Chaos Solitons Fract. 161, 112383 (2022)

    Google Scholar 

  48. Song, Y., Yang, B., Wang, Z.: Bifurcations and exact solutions of a new (3+ 1)-dimensional Kadomtsev-Petviashvili equation. Phys. Lett. A 461, 128647 (2023)

    MathSciNet  Google Scholar 

  49. Leta, T.D., Chen, J., El Achab, A.: Innovative solutions and sensitivity analysis of a fractional complex Ginzburg-Landau equation. Opt. Quantum Electron. 55, 931 (2023)

    Google Scholar 

  50. Wang, Y., Zhang, B., Cao, B.: The exact solutions of generalized Davey-Stewartson equations with arbitrary power nonlinearities using the dynamical system and the first integral methods. Open Math. 20(1), 894–910 (2022)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (No.12261015, No.62062018), Project of High-level Innovative Talents of Guizhou Province ([2016]5651).

Funding

This work is supported by National Natural Science Foundation of China (No.12261015, No.62062018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changjin Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Shi, S., Xu, C. et al. Bifurcations, chaotic behavior, sensitivity analysis and new optical solitons solutions of Sasa-Satsuma equation. Nonlinear Dyn 112, 7405–7415 (2024). https://doi.org/10.1007/s11071-024-09438-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09438-6

Keywords

Navigation