Skip to main content
Log in

Spatiotemporal dynamics of a modified FitzHugh–Nagumo neuronal network with time delays

  • Research
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Over the past decades, spatiotemporal dynamics has received considerable attention in many fields, such as biology, chemistry and neuroscience. This paper reveals the spiral wave dynamics in a two-dimensional modified FitzHugh–Nagumo neuronal network. The network is composed of interacting neurons with nearest-neighbor connections. Time delays are introduced into the couplings among neurons. Numerical simulations are performed and interesting and abundant spatiotemporal patterns are obtained, such as spiral waves. It is shown that the time delays can give rise to the generation, transition and modulation of the spiral waves. Moreover, external periodic excitations are applied to regulate the spiral waves and different types of waves are observed, such as target wave and traveling wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The data used to support the findings of the study are available from the corresponding author upon request.

References

  1. Zaikin, A.N., Zhabotinsky, A.M.: Concentration wave propagation in two-dimensional liquid-phase self-oscillating system. Nature 225, 535–537 (1970)

    Google Scholar 

  2. Winfree, A.T.: Spiral waves of chemical activity. Science 175(4022), 634–636 (1972)

    Google Scholar 

  3. Girard, S., Lückhoff, A., Lechleiter, J., Sneyd, J., Clapham, D.: Two-dimensional model of calcium waves reproduces the patterns observed in Xenopus oocytes. Biophys. J . 61(2), 509–517 (1992)

    Google Scholar 

  4. Davidenko, J.M., Pertsov, A.V., Salomonsz, R., Baxter, W., Jalife, J.: Stationary and drifting spiral waves of excitation in isolated cardiac muscle. Nature 355(6358), 349–351 (1992)

    Google Scholar 

  5. Geberth, D., Hütt, M.T.: Combining spiral and target wave detection to analyze excitable media dynamics. Phys. A 389, 249–258 (2010)

    Google Scholar 

  6. Huang, X.Y., Xu, W.F., Liang, J.M., Takagaki, K., Gao, X., Wu, J.Y.: Spiral wave dynamics in neocortex. Neuron 68(5), 978–990 (2010)

    Google Scholar 

  7. Gray, R.A., Pertsov, A.M., Jalife, J.: Spatial and temporal organization during cardiac fibrillation. Nature 392(6671), 75–78 (1998)

    Google Scholar 

  8. Jalife, J.: Ventricular fibrillation: mechanisms of initiation and maintenance. Annu. Rev. Physiol. 62(1), 25–50 (2000)

    Google Scholar 

  9. Yuan, G.Y., Wang, G.R., Chen, S.G.: Control of spiral waves and spatiotemporal chaos by periodic perturbation near the boundary. Europhys. Lett. 72(6), 908–914 (2005)

    Google Scholar 

  10. Hou, Z.M., Shi, B.C., Chai, Z.H.: A lattice Boltzmann based local feedback control approach for spiral wave. Comput. Math. Appl. 74(10), 2330–2340 (2017)

    MathSciNet  Google Scholar 

  11. Sinha, S., Pande, A., Pandit, R.: Defibrillation via the elimination of spiral turbulence in a model for ventricular fibrillation. Phys. Rev. Lett. 86(16), 3678–3681 (2001)

    Google Scholar 

  12. Rajagopal, K., Jafari, S., Moroz, I., Karthikeyan, A., Srinivasan, A.: Noise induced suppression of spiral waves in a hybrid FitzHugh–Nagumo neuron with discontinuous resetting. Chaos 31, 073117 (2021)

    MathSciNet  Google Scholar 

  13. Yuan, G.Y., Gao, Z.M., Yan, S.T., Wang, G.R.: Termination of a pinned spiral wave by the wave train with a free defect. Nonlinear Dyn. 104(3), 2583–2597 (2021)

    Google Scholar 

  14. Rostami, Z., Jafari, S., Perc, M., Slavinec, M.: Elimination of spiral waves in excitable media by magnetic induction. Nonlinear Dyn. 94, 679–692 (2018)

    Google Scholar 

  15. Wang, Z., Rostami, Z., Jafari, S., Alsaadi, F.E., Slavinec, M., Perc, M.: Suppression of spiral wave turbulence by means of periodic plane waves in two-layer excitable media. Chaos Solitons Fractals 128, 229–233 (2019)

    MathSciNet  Google Scholar 

  16. Xu, Y., Ma, J.: Pattern formation in a thermosensitive neural network. Commun. Nonlinear Sci. Numer. Simul. 111, 106426 (2022)

    MathSciNet  Google Scholar 

  17. Wang, P.Y., Xie, P.: Eliminating spatiotemporal chaos and spiral waves by weak spatial perturbations. Phys. Rev. E 61(5A), 5120–5123 (2000)

    Google Scholar 

  18. Sakaguchi, H., Fujimoto, T.: Elimination of spiral chaos by periodic force for the Aliev–Panfilov model. Phys. Rev. E 67(6), 067202 (2003)

    Google Scholar 

  19. Zhang, H., Hu, B., Hu, G.: Suppression of spiral waves and spatiotemporal chaos by generating target waves in excitable media. Phys. Rev. E 68(2), 026134 (2003)

    Google Scholar 

  20. Ma, J., Qin, H.X., Song, X.L., Chu, R.T.: Pattern selection in neuronal network driven by electric autapses with diversity in time delays. Int. J. Mod. Phys. B 29(1), 1450239 (2015)

    Google Scholar 

  21. Rajagopal, K., Panahi, S., Shourgashti, Z., Karthikeyan, A., Hussain, I.: Suppressing spiral waves with delayed asymmetric bidirectional coupling in a multi-layer biological network. Eur. Phys. J. Spec. Top. 231, 921–927 (2022)

    Google Scholar 

  22. Etémé, A.S., Tabi, C.B., Mohamadou, A., Kofané, T.C.: Elimination of spiral waves in a two-dimensional Hindmarsh–Rose neural network under long-range interaction effect and frequency excitation. Phys. A 533, 122037 (2019)

    MathSciNet  Google Scholar 

  23. Tabi, C.B., Etémé, A.S., Kofané, T.C.: Unstable cardiac multi-spiral waves in a FitzHugh–Nagumo soliton model under magnetic flow effect. Nonlinear Dyn. 100, 3799–3814 (2020)

    Google Scholar 

  24. Guo, S.J., Dai, Q.L., Cheng, H.Y., Li, H.Y., Xie, F.G., Yang, J.Z.: Spiral wave chimera in two-dimensional nonlocally coupled Fitzhugh–Nagumo systems. Chaos Solitons Fractals 114, 394–399 (2018)

    MathSciNet  Google Scholar 

  25. Zheng, Q.Q., Shen, J.W.: Pattern formation in the FitzHugh–Nagumo model. Comput. Math. Appl. 70(5), 1082–1097 (2015)

    MathSciNet  Google Scholar 

  26. Zheng, Q.Q., Shen, J.W.: Turing instability induced by random network in FitzHugh–Nagumo model. Appl. Math. Comput. 381, 125304 (2020)

    MathSciNet  Google Scholar 

  27. Panfilov, A., Hogeweg, P.: Spiral breakup in a modified FitzHugh–Nagumo model. Phys. Lett. A 176(5), 295–299 (1993)

    Google Scholar 

  28. Aliev, R.R., Panfilov, A.V.: A simple two-variable model of cardiac excitation. Chaos Solitons Fractals 7(3), 293–301 (1996)

    Google Scholar 

  29. Wu, F.Q., Wang, C.N., Xu, Y., Ma, J.: Model of electrical activity in cardiac tissue under electromagnetic induction. Sci. Rep. 6(28), 1–12 (2016)

    Google Scholar 

  30. Wang, Q.Y., Chen, G.R., Perc, M.: Synchronous bursts on scale-free neuronal networks with attractive and repulsive coupling. PLoS ONE 6(1), e15851 (2011)

    Google Scholar 

  31. Mao, X.C., Lei, F.C.: Stability analysis and coexisting behaviors of a delayed multiplex network under electromagnetic radiation. Int. J. Bifurcat. Chaos 32(10), 2250148 (2022)

    MathSciNet  Google Scholar 

  32. Wang, Q.Y., Lu, Q.S., Chen, G.R., Feng, Z.S., Duan, L.X.: Bifurcation and synchronization of synaptically coupled FHN models with time delay. Chaos Solitons Fractals 39(2), 918–925 (2009)

    Google Scholar 

  33. Fan, D.G., Wang, Q.Y.: Synchronization and bursting transition of the coupled Hindmarsh–Rose systems with asymmetrical time-delays. Sci. China Technol. Sci. 60(7), 1019–1031 (2017)

    Google Scholar 

  34. Buscarino, A., Fortuna, L., Frasca, M., Sciuto, G.: A Concise Guide to Chaotic Electronic Circuits. Springer, New York (2014)

    Google Scholar 

  35. Mao, X.C., Hu, H.Y.: Hopf bifurcation analysis of a four-neuron network with multiple time delays. Nonlinear Dyn. 55, 95–112 (2009)

    MathSciNet  Google Scholar 

  36. Wang, Q.Y., Zhang, H.H., Chen, G.R.: Effect of the heterogeneous neuron and information transmission delay on stochastic resonance of neuronal networks. Chaos 22(4), 043123 (2012)

    MathSciNet  Google Scholar 

  37. Choe, C.U., Kim, R.S., Jo, H.: Spiral wave chimeras induced by heterogeneity in phase lags and time delays. Physica D 422, 132892 (2021)

    MathSciNet  Google Scholar 

  38. Majhi, S., Perc, M., Ghosh, D.: Chimera states in a multilayer network of coupled and uncoupled neurons. Chaos 27(7), 073109 (2017)

    MathSciNet  Google Scholar 

  39. Wang, Q.Y., Zheng, Y.H.: Effects of information transmission delay and channel blocking on synchronization in scale-free Hodgkin-Huxley neuronal networks. Acta. Mech. Sin. 27(6), 1052–1058 (2011)

    Google Scholar 

  40. Hu, H.X., Ji, L., Li, Q.S.: Delay-induced inward and outward spiral waves in oscillatory medium. J. Chem. Phys. 128(4), 044904 (2008)

    Google Scholar 

  41. Hu, H.X., Li, X.C., Fang, Z.M., Fu, X., Ji, L., Li, Q.S.: Inducing and modulating spiral waves by delayed feedback in a uniform oscillatory reaction–diffusion system. Chem. Phys. 371(1–3), 60–65 (2010)

    Google Scholar 

  42. Wang, Q.Y., Perc, M., Duan, Z.S., Chen, G.R.: Delay-enhanced coherence of spiral waves in noisy Hodgkin–Huxley neuronal networks. Phys. Lett. A 372(35), 5681–5687 (2008)

    Google Scholar 

  43. Lü, L., Ge, L.J., Gao, L.Y., Han, C.H., Li, C.R.: Synchronization transmission of spiral wave and turbulence in uncertain time-delay neuronal networks. Phys. A 525, 64–71 (2019)

    MathSciNet  Google Scholar 

  44. Rajagopal, K., Jafari, S., Li, C.B., Karthikeyan, A., Duraisamy, P.: Suppressing spiral waves in a lattice array of coupled neurons using delayed asymmetric synapse coupling. Chaos Solitons Fractals 146, 110855 (2021)

    MathSciNet  Google Scholar 

  45. Fan, D.G., Zhang, L.Y., Wang, Q.Y.: Transition dynamics and adaptive synchronization of time-delay interconnected corticothalamic systems via nonlinear control. Nonlinear Dyn. 94(4), 2807–2825 (2018)

    Google Scholar 

  46. Han, F., Zhen, B., Du, Y., Zheng, Y.H., Wiercigroch, M.: Global Hopf bifurcation analysis of a six-dimensional Fitzhugh–Nagumo neural network with delay by a synchronized scheme. Discrete Contin. Dyn. Syst. B 16(2), 457–474 (2011)

    MathSciNet  Google Scholar 

  47. Liu, Z.L., Yu, Y., Wang, Q.Y.: Functional modular organization unfolded by chimera-like dynamics in a large-scale brain network model. Sci. China Technol. Sci. 65(7), 1435–1444 (2022)

  48. Mao, X.C., Li, X.Y., Ding, W.J., Wang, S., Zhou, X.Y., Qiao, L.: Dynamics of a multiplex neural network with delayed couplings. Appl. Math. Mech. English Edn. 42(3), 441–456 (2021)

    MathSciNet  Google Scholar 

  49. Yu, Y., Fan, Y.B., Han, F., Luan, G.M., Wang, Q.Y.: Transcranial direct current stimulation inhibits epileptic activity propagation in a large-scale brain network model. Sci. China Technol. Sci. 66(12), 3628–3638 (2023)

    Google Scholar 

  50. Garcia-Ojalvo, J., Elowitz, M.B., Strogatz, S.H.: Modeling a synthetic multicellular clock: repressilators coupled by quorum sensing. Proc. Natl. Acad. Sci. 101(30), 10955–10960 (2004)

    MathSciNet  Google Scholar 

  51. Gonze, D., Bernard, S., Waltermann, C., Kramer, A., Herzel, H.: Spontaneous synchronization of coupled circadian oscillators. Biophys. J . 89(1), 120–129 (2005)

    Google Scholar 

  52. Ma, J., Wu, Y., Ying, H.P., Jia, Y.: Channel noise-induced phase transition of spiral wave in networks of Hodgkin–Huxley neurons. Chin. Sci. Bull. 56(2), 151–157 (2011)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 12172119 and 11872169, and Natural Science Foundation of Jiangsu Province of China under Grant No. BK20191295.

The authors thank the anonymous reviewers for helpful comments and suggestions that have helped to improve the presentation.

Funding

This work was supported by the National Natural Science Foundation of China under Grant Nos. 12172119 and 11872169 and Natural Science Foundation of Jiangsu Province of China under Grant No. BK20191295.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaochen Mao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Y., Mao, X. Spatiotemporal dynamics of a modified FitzHugh–Nagumo neuronal network with time delays. Nonlinear Dyn 112, 7571–7582 (2024). https://doi.org/10.1007/s11071-024-09424-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09424-y

Keywords

Navigation