Skip to main content
Log in

Linear and nonlinear stiffness compensation for low-frequency vibration isolation: a comparative study

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Quasi-zero stiffness (QZS) vibration isolators show great advantages in low frequency vibration isolation and often developed by compensating the negative stiffness of the bistable structure by linear spring. To overcome the limitation of the bistable property, this paper utilizes linear stiffness (linear spring) and nonlinear stiffness (repulsive magnets) respectively to compensate the general negative stiffness (rhombus structure), and realizes two types of vibration isolators, the QZS-L and QZS-N isolator. Static models are established to characterize the stiffness property and reveal two basic principles for realizing QZS. The realization of QZS in the QZS-L isolator requires large deformation, but it can be achieved under small deformation in the QZS-N system. Both the QZS-L isolator and QZS-N isolator have weak asymmetry in stiffness, which leads to bias in steady-state response. And the former has stronger asymmetry and greater bias. The adjustment method of the QZS-L and QZS-N isolators for different loads is also elaborated separately. A unified dynamic model is established and the displacement transmissibility is derived to evaluate the vibration isolation performance of the two system. The QZS-L isolator is a softening system with a left-shifted resonance peak, while the QZS-N behave as a hardening system with a right-shifted resonance peak. Both isolators have a low resonant frequency and a wide isolation frequency band. Moreover, the initial isolation frequency can become lower when adjusted for larger loads. Comprehensive comparisons and discussions of static characteristics, isolation band, and zero offset are instructive in designing low frequency vibration isolators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author [Wenming Zhang], upon reasonable request.

References

  1. Gu, M., Du, X.: Experimental investigation of rain–wind-induced vibration of cables in cable-stayed bridges and its mitigation. J. Wind Eng. Ind. Aerodyn. 93, 79–95 (2005)

    Google Scholar 

  2. Zhang, T., Shi, D., Wang, Z., Zhang, P., Wang, S., Ding, X.: Vibration-based structural damage detection via phase-based motion estimation using convolutional neural networks. Mech. Syst. Signal Process. 178, 109320 (2022)

    Google Scholar 

  3. Ozsoy, M., Sims, N.D., Ozturk, E.: Robotically assisted active vibration control in milling: a feasibility study. Mech. Syst. Signal Process. 177, 109152 (2022)

    Google Scholar 

  4. Yun, H., Liu, L., Li, Q., Li, W., Tang, L.: Development of an isotropic Stewart platform for telescope secondary mirror. Mech. Syst. Signal Process. 127, 328–344 (2019)

    Google Scholar 

  5. Sun, Y., Gong, D., Zhou, J., Sun, W., Xia, Z.: Low frequency vibration control of railway vehicles based on a high static low dynamic stiffness dynamic vibration absorber. Sci. China Technol. Sci. 62, 60–69 (2019)

    Google Scholar 

  6. Wang, Q., Zhou, J., Xu, D., Ouyang, H.: Design and experimental investigation of ultra-low frequency vibration isolation during neonatal transport. Mech. Syst. Signal Process. 139, 106633 (2020)

    Google Scholar 

  7. Danh, L.T., Ahn, K.K.: Active pneumatic vibration isolation system using negative stiffness structures for a vehicle seat. J. Sound Vib. 333, 1245–1268 (2014)

    Google Scholar 

  8. Le, T.D., Ahn, K.K.: Experimental investigation of a vibration isolation system using negative stiffness structure. Int. J. Mech. Sci. 70, 99–112 (2013)

    Google Scholar 

  9. Abbasi, A., Nazari, F., Nataraj, C.: Adaptive modeling of vibrations and structural fatigue for analyzing crack propagation in a rotating system. J. Sound Vib. 541, 117276 (2022)

    Google Scholar 

  10. Kamesh, D., Pandiyan, R., Ghosal, A.: Modeling, design and analysis of low frequency platform for attenuating micro-vibration in spacecraft. J. Sound Vib. 329, 3431–3450 (2010)

    Google Scholar 

  11. Kamesh, D., Pandiyan, R., Ghosal, A.: Passive vibration isolation of reaction wheel disturbances using a low frequency flexible space platform. J. Sound Vib. 331, 1310–1330 (2012)

    Google Scholar 

  12. Ibrahim, R.A.: Recent advances in nonlinear passive vibration isolators. J. Sound Vib. 314, 371–452 (2008)

    Google Scholar 

  13. Xing, Z.-Y., Yang, X.-D.: A combined vibration isolation system with quasi-zero stiffness and dynamic vibration absorber. Int. J. Mech. Sci. 256, 108508 (2023)

    Google Scholar 

  14. Yu, C., Jiang, Q., Fu, Q., Yu, K., Zhang, J., Zhang, N.: The X-shaped structure with nonlinear positive stiffness compensation for low-frequency vibration isolation. Int. J. Mech. Sci. 259, 108598 (2023)

    Google Scholar 

  15. Carrella, A., Brennan, M.J., Kovacic, I., Waters, T.P.: On the force transmissibility of a vibration isolator with quasi-zero-stiffness. J. Sound Vib. 322, 707–717 (2009)

    Google Scholar 

  16. Carrella, A., Brennan, M.J., Waters, T.P.: Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 301, 678–689 (2007)

    Google Scholar 

  17. Carrella, A., Brennan, M.J., Waters, T.P., Lopes, V.: Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness. Int. J. Mech. Sci. 55, 22–29 (2012)

    Google Scholar 

  18. Zhao, F., Ji, J., Ye, K., Luo, Q.: An innovative quasi-zero stiffness isolator with three pairs of oblique springs. Int. J. Mech. Sci. 192, 106093 (2021)

    Google Scholar 

  19. Zhao, F., Ji, J.C., Ye, K., Luo, Q.: Increase of quasi-zero stiffness region using two pairs of oblique springs. Mech. Syst. Signal Process. 144, 106975 (2020)

    Google Scholar 

  20. Brennan, M.J., Kovacic, I., Carrella, A., Waters, T.P.: On the jump-up and jump-down frequencies of the Duffing oscillator. J. Sound Vib. 318, 1250–1261 (2008)

    Google Scholar 

  21. Le, T.D., Nguyen, V.A.D.: Low frequency vibration isolator with adjustable configurative parameter. Int. J. Mech. Sci. 134, 224–233 (2017)

    Google Scholar 

  22. Yan, G., Zou, H.-X., Wang, S., Zhao, L.-C., Gao, Q.-H., Tan, T., Zhang, W.-M.: Large stroke quasi-zero stiffness vibration isolator using three-link mechanism. J. Sound Vib. 478, 115344 (2020)

    Google Scholar 

  23. Sun, X., Jing, X.: Multi-direction vibration isolation with quasi-zero stiffness by employing geometrical nonlinearity. Mech. Syst. Signal Process. 62–63, 149–163 (2015)

    Google Scholar 

  24. Li, M., Cheng, W., Xie, R.: A quasi-zero-stiffness vibration isolator using a cam mechanism with user-defined profile. Int. J. Mech. Sci. 189, 105938 (2021)

    Google Scholar 

  25. Yao, Y., Li, H., Li, Y., Wang, X.: Analytical and experimental investigation of a high-static-low-dynamic stiffness isolator with cam-roller-spring mechanism. Int. J. Mech. Sci. 186, 105888 (2020)

    Google Scholar 

  26. Zhou, J., Wang, X., Xu, D., Bishop, S.: Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam–roller–spring mechanisms. J. Sound Vib. 346, 53–69 (2015)

    Google Scholar 

  27. Zuo, S., Wang, D., Zhang, Y., Luo, Q.: Design and testing of a parabolic cam-roller quasi-zero-stiffness vibration isolator. Int. J. Mech. Sci. 220, 107146 (2022)

    Google Scholar 

  28. Kamaruzaman, N.A., Robertson, W.S.P., Ghayesh, M.H., Cazzolato, B.S., Zander, A.C.: Six degree of freedom quasi-zero stiffness magnetic spring with active control: theoretical analysis of passive versus active stability for vibration isolation. J. Sound Vib. 502, 116086 (2021)

    Google Scholar 

  29. Wu, M., Wu, J., Che, J., Gao, R., Chen, X., Li, X., Zeng, L., Jiang, W.: Analysis and experiment of a novel compact magnetic spring with high linear negative stiffness. Mech. Syst. Signal Process. 198, 110387 (2023)

    Google Scholar 

  30. Wu, W., Chen, X., Shan, Y.: Analysis and experiment of a vibration isolator using a novel magnetic spring with negative stiffness. J. Sound Vib. 333, 2958–2970 (2014)

    Google Scholar 

  31. Zheng, Y., Li, Q., Yan, B., Luo, Y., Zhang, X.: A Stewart isolator with high-static-low-dynamic stiffness struts based on negative stiffness magnetic springs. J. Sound Vib. 422, 390–408 (2018)

    Google Scholar 

  32. Ishida, S., Suzuki, K., Shimosaka, H.: Design and experimental analysis of origami-inspired vibration isolator with quasi-zero-stiffness characteristic. J. Vib. Acoust. 139, 051004 (2017)

    Google Scholar 

  33. Liu, S., Peng, G., Li, Z., Li, W., Sun, L.: Low-frequency vibration isolation via an elastic origami-inspired structure. Int. J. Mech. Sci. 260, 108622 (2023)

    Google Scholar 

  34. Ye, K., Ji, J.C.: An origami inspired quasi-zero stiffness vibration isolator using a novel truss-spring based stack Miura-ori structure. Mech. Syst. Signal Process. 165, 108383 (2022)

    Google Scholar 

  35. Han, H., Sorokin, V., Tang, L., Cao, D.: A nonlinear vibration isolator with quasi-zero-stiffness inspired by Miura-origami tube. Nonlinear Dyn. 105, 1313–1325 (2021)

    Google Scholar 

  36. Yan, G., Qi, W.-H., Shi, J.-W., Yan, H., Zou, H.-X., Zhao, L.-C., Wu, Z.-Y., Fang, X.-Y., Li, X.-Y., Zhang, W.-M.: Bionic paw-inspired structure for vibration isolation with novel nonlinear compensation mechanism. J. Sound Vib. 525, 116799 (2022)

    Google Scholar 

  37. Yan, G., Zou, H.-X., Wang, S., Zhao, L.-C., Wu, Z.-Y., Zhang, W.-M.: Bio-inspired vibration isolation: methodology and design. Appl. Mech. Rev. 73, 020801 (2021)

    Google Scholar 

  38. Yan, G., Zou, H.-X., Wang, S., Zhao, L.-C., Wu, Z.-Y., Zhang, W.-M.: Bio-inspired toe-like structure for low-frequency vibration isolation. Mech. Syst. Signal Process. 162, 108010 (2022)

    Google Scholar 

  39. Jing, X., Zhang, L., Feng, X., Sun, B., Li, Q.: A novel bio-inspired anti-vibration structure for operating hand-held jackhammers. Mech. Syst. Signal Process. 118, 317–339 (2019)

    Google Scholar 

  40. Sun, X., Qi, Z., Xu, J.: Vibration properties of a knee bio-inspired nonlinear isolation structure. Int. J. Non-Linear Mech. 147, 104245 (2022)

    Google Scholar 

  41. Sun, X., Xu, J., Wang, F., Zhang, S.: A novel isolation structure with flexible joints for impact and ultralow-frequency excitations. Int. J. Mech. Sci. 146–147, 366–376 (2018)

    Google Scholar 

  42. Wang, K., Zhou, J., Chang, Y., Ouyang, H., Xu, D., Yang, Y.: A nonlinear ultra-low-frequency vibration isolator with dual quasi-zero-stiffness mechanism. Nonlinear Dyn. 101, 755–773 (2020)

    Google Scholar 

  43. Ye, K., Ji, J.C., Brown, T.: Design of a quasi-zero stiffness isolation system for supporting different loads. J. Sound Vib. 471, 115198 (2020)

    Google Scholar 

  44. Dong, G., Zhang, X., Xie, S., Yan, B., Luo, Y.: Simulated and experimental studies on a high-static-low-dynamic stiffness isolator using magnetic negative stiffness spring. Mech. Syst. Signal Process. 86, 188–203 (2017)

    Google Scholar 

  45. Jiang, Y., Song, C., Ding, C., Xu, B.: Design of magnetic-air hybrid quasi-zero stiffness vibration isolation system. J. Sound Vib. 477, 115346 (2020)

    Google Scholar 

  46. Xu, D., Yu, Q., Zhou, J., Bishop, S.R.: Theoretical and experimental analyzes of a nonlinear magnetic vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 332, 3377–3389 (2013)

    Google Scholar 

  47. Yan, B., Ma, H., Zhao, C., Wu, C., Wang, K., Wang, P.: A vari-stiffness nonlinear isolator with magnetic effects: Theoretical modeling and experimental verification. Int. J. Mech. Sci. 148, 745–755 (2018)

    Google Scholar 

  48. Ma, H., Yan, B.: Nonlinear damping and mass effects of electromagnetic shunt damping for enhanced nonlinear vibration isolation. Mech. Syst. Signal Process. 146, 107010 (2021)

    Google Scholar 

  49. Ma, H., Yan, B., Zhang, L., Zheng, W., Wang, P., Wu, C.: On the design of nonlinear damping with electromagnetic shunt damping. Int. J. Mech. Sci. 175, 105513 (2020)

    Google Scholar 

  50. Yan, B., Ma, H., Zhang, L., Wu, C., Zhang, X.: Electromagnetic shunt damping for shock isolation of nonlinear vibration isolators. J. Sound Vib. 479, 115370 (2020)

    Google Scholar 

  51. Yan, B., Ma, H., Zheng, W., Jian, B., Wang, K., Wu, C.: Nonlinear Electromagnetic Shunt Damping for Nonlinear Vibration Isolators. IEEE/ASME Trans. Mechatron. 24, 1851–1860 (2019)

    Google Scholar 

  52. Yan, B., Wang, X., Ma, H., Lu, W., Li, Q.: Hybrid Time-Delayed Feedforward and Feedback Control of Lever-Type Quasi-Zero-Stiffness Vibration Isolators. IEEE Trans. Industr. Electron. 71, 2810–2819 (2024)

    Google Scholar 

  53. Huang, X., Chen, Y., Hua, H., Liu, X., Zhang, Z.: Shock isolation performance of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: theoretical and experimental study. J. Sound Vib. 345, 178–196 (2015)

    Google Scholar 

  54. Huang, X., Liu, X., Sun, J., Zhang, Z., Hua, H.: Vibration isolation characteristics of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: a theoretical and experimental study. J. Sound Vib. 333, 1132–1148 (2014)

    Google Scholar 

  55. Niu, M.-Q., Chen, L.-Q.: Nonlinear vibration isolation via a compliant mechanism and wire ropes. Nonlinear Dyn. 107, 1687–1702 (2022)

    Google Scholar 

  56. Chai, Y., Jing, X., Chao, X.: X-shaped mechanism based enhanced tunable QZS property for passive vibration isolation. Int. J. Mech. Sci. 218, 107077 (2022)

    Google Scholar 

  57. Yan, G., Wu, Z.-Y., Wei, X.-S., Wang, S., Zou, H.-X., Zhao, L.-C., Qi, W.-H., Zhang, W.-M.: Nonlinear compensation method for quasi-zero stiffness vibration isolation. J. Sound Vib. 523, 116743 (2021)

    Google Scholar 

  58. Jing, X., Chai, Y., Chao, X., Bian, J.: In-situ adjustable nonlinear passive stiffness using X-shaped mechanisms. Mech. Syst. Signal Process. 170, 108267 (2022)

    Google Scholar 

  59. Bian, J., Jing, X.: Analysis and design of a novel and compact X-structured vibration isolation mount (X-Mount) with wider quasi-zero-stiffness range. Nonlinear Dyn. 101, 2195–2222 (2020)

    Google Scholar 

  60. Qi, W.-H., Yan, G., Lu, J.-J., Yan, H., Shi, J.-W., Wei, X.-S., Wang, S., Zhang, W.-M.: Magnetically modulated sliding structure for low frequency vibration isolation. J. Sound Vib. 526, 116819 (2022)

    Google Scholar 

  61. Lu, J.-J., Yan, G., Qi, W.-H., Yan, H., Ma, J., Shi, J.-W., Wu, Z.-Y., Zhang, W.-M.: Sliding-boundary-constrained cantilever structure for vibration isolation via nonlinear stiffness modulation. Int. J. Mech. Sci. 235, 107733 (2022)

    Google Scholar 

  62. Zhao, T.-Y., Yan, G., Qi, W.-H., Lu, J.-J., Zhang, W.-M.: Magnetically modulated tetrahedral structure for low frequency vibration isolation with adjustable load capacity. Int. J. Mech. Sci. 251, 108335 (2023)

    Google Scholar 

  63. Dai, H., Jing, X., Sun, C., Wang, Y., Yue, X.: Accurate modeling and analysis of a bio-inspired isolation system: with application to on-orbit capture. Mech. Syst. Signal Process. 109, 111–133 (2018)

    Google Scholar 

  64. Dai, H., Jing, X., Wang, Y., Yue, X., Yuan, J.: Post-capture vibration suppression of spacecraft via a bio-inspired isolation system. Mech. Syst. Signal Process. 105, 214–240 (2018)

    Google Scholar 

  65. Sun, X., Jing, X., Xu, J., Cheng, L.: Vibration isolation via a scissor-like structured platform. J. Sound Vib. 333, 2404–2420 (2014)

    Google Scholar 

  66. Bednarek, M., Lewandowski, D., Polczyński, K., Awrejcewicz, J.: On the active damping of vibrations using electromagnetic spring. Mech. Based Des. Struct. Mach. 49, 1131–1144 (2020)

    Google Scholar 

  67. Pilipchuk, V.N., Polczyński, K., Bednarek, M., Awrejcewicz, J.: Guidance of the resonance energy flow in the mechanism of coupled magnetic pendulums. Mech. Mach. Theory 176, 105019 (2022)

    Google Scholar 

  68. Witkowski, K., Kudra, G., Skurativskyi, S., Wasilewski, G., Awrejcewicz, J.: Modeling and dynamics analysis of a forced two-degree-of-freedom mechanical oscillator with magnetic springs. Mech. Syst. Signal Process. 148, 107138 (2021)

    Google Scholar 

Download references

Funding

The authors gratefully acknowledge the support by the National Natural Science Foundation of China (12032015, 12121002), Science and Technology Innovation Action Plan of Shanghai (Grant No. 21190760100), and the China Postdoctoral Science Foundation (Grant No. 2022M722095).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Ming Zhang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, G., Lu, JJ., Qi, WH. et al. Linear and nonlinear stiffness compensation for low-frequency vibration isolation: a comparative study. Nonlinear Dyn 112, 5955–5973 (2024). https://doi.org/10.1007/s11071-024-09367-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09367-4

Keywords

Navigation