Skip to main content
Log in

Friction dynamics identification based on quadratic approximation of LuGre model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In mechanical transmission servo systems, where friction is the primary disturbance, such as robot joints, dynamic friction is considered the leading cause of control inaccuracy in low-speed regions and during velocity direction changes. The LuGre model is a well-established dynamic friction model that has proved successful in describing dynamic frictional phenomena in such systems. However, most identification methods of the LuGre model rely on the prior knowledge of the inner parameters, and the internal state is difficult to observe. These factors make the friction dynamics identification become very cumbersome. On the other hand, we have discovered that the LuGre model exhibits redundancy in predicting friction dynamics. Therefore, in this article, the LuGre model is remodeled as a dynamic neuron by its recurrent quadratic approximation to expose high-order hidden parameters. On the basis of this modeling approach, a direct adaptive control architecture is proposed to identify all unknown parameters without any prior knowledge. In this scheme, a self-tuning combined error neuron is designed whose signal–noise ratio is maximized by principle component analysis. Besides, a kernel function-based stabilizing term is introduced in the update laws to suppress the oscillation during transient response. The feasibility of the strategy is verified through stability analysis. Simulation results show that the estimated LuGre model correctly reveals the actual behavior of friction dynamics. Finally, comparative experiments are carried out on a rotary actuator. The results show that the proposed adaptive control-based learning strategy significantly enhances position tracking performance, especially in the processes of slow crawling and switching in speed direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Zhang, X., Xu, J., Ji, J.: Modelling and tuning for a time-delayed vibration absorber with friction. J. Sound Vib. 424, 137–157 (2018). https://doi.org/10.1016/j.jsv.2018.03.019

    Article  Google Scholar 

  2. Liu, Y., Jiang, D., Yun, J., Sun, Y., Li, C., Jiang, G., Kong, J., Tao, B., Fang, Z.: Self-tuning control of manipulator positioning based on fuzzy pid and pso algorithm. Front. Bioeng. Biotechnol. (2022). https://doi.org/10.3389/fbioe.2021.817723

    Article  Google Scholar 

  3. Lim, L.H.I., Yang, D.: High-precision XY stage motion control of industrial microscope. IEEE Trans. Ind. Electron. 66(3), 1984–1992 (2019). https://doi.org/10.1109/TIE.2018.2838102

    Article  Google Scholar 

  4. Zimmermann, J., Sawodny, O., Lyda, W., Osten, W.: Model-based control of a high-precision measurement machine for multiscale inspection tasks. IFAC Proc. Vol. 43(18), 545–551 (2010). https://doi.org/10.3182/20100913-3-US-2015.00127. (5th IFAC Symposium on Mechatronic Systems)

    Article  Google Scholar 

  5. Tao, T., Jiaguang, M., Hongbin, C., Chengyu, F., Hu, Y., Ge, R., Wenshu, Y., Bo, Q., Lei, C., Mengwei, Z., et al.: A review on precision control methodologies for optical-electric tracking control system. Opt.-Electron. Eng. 47(10), 200315–1 (2020)

    Google Scholar 

  6. Marques, F., Flores, P., Pimenta Claro, J.C., Lankarani, H.M.: A survey and comparison of several friction force models for dynamic analysis of multibody mechanical systems. Nonlinear Dyn. 86(3), 1407–1443 (2016). https://doi.org/10.1007/s11071-016-2999-3

    Article  MathSciNet  Google Scholar 

  7. Dewit, C., Olsson, H., Astrom, K., Lischinsky, P.: A new model for control of systems with friction. IEEE Trans. Autom. Control 40(3), 419–425 (1995). https://doi.org/10.1109/9.376053

    Article  MathSciNet  Google Scholar 

  8. Swevers, J., Al-Bender, F., Ganseman, C.G., Projogo, T.: An integrated friction model structure with improved presliding behavior for accurate friction compensation. IEEE Trans. Autom. Control 45(4), 675–686 (2000). https://doi.org/10.1109/9.847103

    Article  MathSciNet  Google Scholar 

  9. Canudas de Wit, C., Olsson, H., Astrom, K.J., Lischinsky, P.: A new model for control of systems with friction. IEEE Trans. Autom. Control 40(3), 419–425 (1995). https://doi.org/10.1109/9.376053

    Article  MathSciNet  Google Scholar 

  10. Huang, S.J., Chiu, C.M.: Optimal lugre friction model identification based on genetic algorithm and sliding mode control of a piezoelectric-actuating table. Trans. Inst. Meas. Control 31, 181–203 (2009). https://doi.org/10.1177/0142331208093938

    Article  Google Scholar 

  11. Irakoze, R., Yakoub, K., Kaddouri, A.: Identification of piezoelectric lugre model based on particle swarm optimization and real-coded genetic algorithm. In: 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1451–1457 (2015). https://doi.org/10.1109/CCECE.2015.7129494

  12. Khan, Z.A., Chacko, V., Nazir, H.: A review of friction models in interacting joints for durability design. Friction 5(1), 1–22 (2017). https://doi.org/10.1007/s40544-017-0143-0

    Article  Google Scholar 

  13. Vedagarbha, P., Dawson, D.M., Feemster, M.: Tracking control of mechanical systems in the presence of nonlinear dynamic friction effects. IEEE Trans. Control Syst. Technol. 7(4), 446–456 (1999). https://doi.org/10.1109/87.772160

    Article  Google Scholar 

  14. Xie, W.-F.: Sliding-mode-observer-based adaptive control for servo actuator with friction. IEEE Trans. Ind. Electron. 54(3), 1517–1527 (2007). https://doi.org/10.1109/TIE.2007.894718

    Article  Google Scholar 

  15. Huang, C.-I., Fu, L.-C.: Adaptive approach to motion controller of linear induction motor with friction compensation. IEEE/ASME Trans. Mechatron. 12(4), 480–490 (2007). https://doi.org/10.1109/TMECH.2007.901945

    Article  Google Scholar 

  16. Xu, L., Yao, B.: Adaptive robust control of mechanical systems with non-linear dynamic friction compensation. Int. J. Control 81(2), 167–176 (2008). https://doi.org/10.1080/00207170701390132

    Article  MathSciNet  Google Scholar 

  17. Lu, L., Yao, B., Wang, Q., Chen, Z.: Adaptive robust control of linear motors with dynamic friction compensation using modified lugre model. Automatica 45(12), 2890–2896 (2009). https://doi.org/10.1016/j.automatica.2009.09.007

    Article  MathSciNet  Google Scholar 

  18. Yue, F., Li, X.: Robust adaptive integral backstepping control for opto-electronic tracking system based on modified lugre friction model. ISA Trans. 80, 312–321 (2018). https://doi.org/10.1016/j.isatra.2018.07.016

    Article  Google Scholar 

  19. Le-Tien, L., Albu-Schäsffer, A.: Robust adaptive tracking control based on state feedback controller with integrator terms for elastic joint robots with uncertain parameters. IEEE Trans. Control Syst. Technol. 26(6), 2259–2267 (2018). https://doi.org/10.1109/TCST.2017.2749564

    Article  Google Scholar 

  20. Kemal Ciliz, M., Tomizuka, M.: Friction modelling and compensation for motion control using hybrid neural network models. Eng. Appl. Artif. Intell. 20(7), 898–911 (2007). https://doi.org/10.1016/j.engappai.2006.12.007

    Article  Google Scholar 

  21. Yue, F., Li, X.: Adaptive sliding mode control based on friction compensation for opto-electronic tracking system using neural network approximations. Nonlinear Dyn. 96(4), 2601–2612 (2019). https://doi.org/10.1007/s11071-019-04945-3

    Article  Google Scholar 

  22. Liu, X., Zhao, F., Ge, S.S., Wu, Y., Mei, X.: End-effector force estimation for flexible-joint robots with global friction approximation using neural networks. IEEE Trans. Ind. Inf. 15(3), 1730–1741 (2019). https://doi.org/10.1109/TII.2018.2876724

    Article  Google Scholar 

  23. Ge, S.S., Lee, T.H., Wang, J.: Adaptive nn control of dynamic systems with unknown dynamic friction. In: Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187), vol. 2, pp. 1760–17652 (2000). https://doi.org/10.1109/CDC.2000.912116

  24. Hu, J., Wang, Y., Liu, L., Xie, Z.: High-accuracy robust adaptive motion control of a torque-controlled motor servo system with friction compensation based on neural network. Arch. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 233(7), 095440621878301 (2018). https://doi.org/10.1177/0954406218783017

    Article  Google Scholar 

  25. Worden, K., Wong, C.X., Parlitz, U., Hornstein, A., Engster, D., Tjahjowidodo, T., Al-Bender, F., Rizos, D.D., Fassois, S.D.: Identification of pre-sliding and sliding friction dynamics: grey box and black-box models. Mech. Syst. Signal Pr. 21(1), 514–534 (2007). https://doi.org/10.1016/j.ymssp.2005.09.004

    Article  Google Scholar 

  26. Johanastrom, K., Canudas-de-Wit, C.: Revisiting the lugre friction model. IEEE Control Syst. 28(6), 101–114 (2008). https://doi.org/10.1109/MCS.2008.929425

  27. Wang, S., Diao, B., Zhang, X., Xu, J., Chen, L.: Adaptive signal-correction-based identification for friction perception of the vibration-driven limbless robot. Nonlinear Dyn. 108(4), 3817–3837 (2022). https://doi.org/10.1007/s11071-022-07392-9

  28. Haykin, S.: Neural Networks and Learning Machines, 3rd edn. Pearson, New Jersey (2009)

    Google Scholar 

  29. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, Upper Saddle River (2002)

    Google Scholar 

Download references

Funding

This work was supported by the Science and Technology Innovation 2030 - “Brain Science and Brain-like Research” Major Project under Grant 2021ZD0201400.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Binluan Wang, Hong Yin, Zhangxing Liu, and Jie Zhao. The first draft of the manuscript was written by Binluan Wang and Hongzhe Jin. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hongzhe Jin.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A The recurrent calculation of G and H

The recurrent progress of the gradient G and Hessian matrix H is presented here. There are 4 paces for one recurrent step calculation.

Pace 1: The first and second derivatives of the Stribeck term \(d_s\) with respect to parameters \(f_c\), \(f_s\), and \(\nu _s\).

$$\begin{aligned}&\frac{\partial \phi }{\partial \nu _s}=-\frac{\rho }{\nu _s}\phi \end{aligned}$$
(A1)
$$\begin{aligned}&\frac{\partial }{\partial \nu _s}\left( \frac{\partial \phi }{\partial \nu _s}\right) =\frac{\rho \left( 1+\rho \right) }{\nu _s^2}\phi \end{aligned}$$
(A2)
$$\begin{aligned}&\frac{\partial \kappa }{\partial \nu _s}=\kappa \frac{\partial \phi }{\partial \nu _s} \end{aligned}$$
(A3)
$$\begin{aligned}&\frac{\partial }{\partial \nu _s}\left( \frac{\partial \kappa }{\partial \nu _s}\right) =\frac{\partial \kappa }{\partial \nu _s}\frac{\partial \phi }{\partial \nu _s}+\kappa \frac{\partial }{\partial \nu _s}\left( \frac{\partial \phi }{\partial \nu _s}\right) \end{aligned}$$
(A4)
$$\begin{aligned}&\frac{\partial g}{\partial f_c} = 1-\kappa \end{aligned}$$
(A5)
$$\begin{aligned}&\frac{\partial g}{\partial f_s} = \kappa \end{aligned}$$
(A6)
$$\begin{aligned}&\frac{\partial g}{\partial \nu _s} = \left( f_s-f_c\right) \frac{\partial \kappa }{\partial \nu _s} \end{aligned}$$
(A7)
$$\begin{aligned}&\frac{\partial }{\partial \nu _s}\left( \frac{\partial g}{\partial f_c}\right) = \frac{\partial }{\partial f_c}\left( \frac{\partial g}{\partial \nu _s}\right) = -\frac{\partial \kappa }{\partial \nu _s} \end{aligned}$$
(A8)
$$\begin{aligned}&\frac{\partial }{\partial \nu _s}\left( \frac{\partial g}{\partial f_s}\right) = \frac{\partial }{\partial f_s}\left( \frac{\partial g}{\partial \nu _s}\right) = \frac{\partial \kappa }{\partial \nu _s} \end{aligned}$$
(A9)
$$\begin{aligned}&\frac{\partial }{\partial \nu _s}\left( \frac{\partial g}{\partial \nu _s}\right) = \left( f_s-f_c\right) \frac{\partial }{\partial \nu _s}\left( \frac{\partial \kappa }{\partial \nu _s}\right) \end{aligned}$$
(A10)
$$\begin{aligned}&\frac{\partial h}{\partial f_c} = -\frac{|{\dot{r}}|}{g^2}\frac{\partial g}{\partial f_c} \end{aligned}$$
(A11)
$$\begin{aligned}&\frac{\partial h}{\partial f_s} = -\frac{|{\dot{r}}|}{g^2}\frac{\partial g}{\partial f_s} \end{aligned}$$
(A12)
$$\begin{aligned}&\frac{\partial h}{\partial \nu _s} = -\frac{|{\dot{r}}|}{g^2}\frac{\partial g}{\partial \nu _s} \end{aligned}$$
(A13)
$$\begin{aligned}&\frac{\partial }{\partial f_c}\left( \frac{\partial h}{\partial f_c}\right) = 2\frac{\vert {\dot{r}}\vert }{g^3}\left( \frac{\partial g}{\partial f_c}\right) ^2 \end{aligned}$$
(A14)
$$\begin{aligned}&\frac{\partial }{\partial f_s}\left( \frac{\partial h}{\partial f_c}\right) = \frac{\partial }{\partial f_c}\left( \frac{\partial h}{\partial f_s}\right) = 2\frac{\vert {\dot{r}}\vert }{g^3}\frac{\partial g}{\partial f_s}\frac{\partial g}{\partial f_c} \end{aligned}$$
(A15)
$$\begin{aligned}&\frac{\partial }{\partial \nu _s}\left( \frac{\partial h}{\partial f_c}\right) = \frac{\partial }{\partial f_c}\left( \frac{\partial h}{\partial \nu _s}\right) \nonumber \\&= 2\frac{\vert {\dot{r}}\vert }{g^3}\frac{\partial g}{\partial \nu _s}\frac{\partial g}{\partial f_c} - \frac{\vert {\dot{r}}\vert }{g^2}\frac{\partial }{\partial \nu _s}\left( \frac{\partial g}{\partial f_c}\right) \end{aligned}$$
(A16)
$$\begin{aligned}&\frac{\partial }{\partial f_s}\left( \frac{\partial h}{\partial f_s}\right) = 2\frac{\vert {\dot{r}}\vert }{g^3}\left( \frac{\partial g}{\partial f_s}\right) ^2 \end{aligned}$$
(A17)
$$\begin{aligned}&\frac{\partial }{\partial \nu _s}\left( \frac{\partial h}{\partial f_s}\right) = \frac{\partial }{\partial f_s}\left( \frac{\partial h}{\partial \nu _s}\right) \nonumber \\&= 2\frac{\vert {\dot{r}}\vert }{g^3}\frac{\partial g}{\partial \nu _s}\frac{\partial g}{\partial f_s} - \frac{\vert {\dot{r}}\vert }{g^2}\frac{\partial }{\partial \nu _s}\left( \frac{\partial g}{\partial f_s}\right) \end{aligned}$$
(A18)
$$\begin{aligned}&\frac{\partial }{\partial \nu _s}\left( \frac{\partial h}{\partial \nu _s}\right) = 2\frac{\vert {\dot{r}}\vert }{g^3}\left( \frac{\partial g}{\partial \nu _s}\right) ^2 - \frac{\vert {\dot{r}}\vert }{g^2}\frac{\partial }{\partial \nu _s}\left( \frac{\partial g}{\partial \nu _s}\right) \end{aligned}$$
(A19)
$$\begin{aligned}&\frac{\partial d_s}{\partial f_c} = \frac{\partial g}{\partial f_c}\textrm{sgn}\left( {\dot{r}}\right) \end{aligned}$$
(A20)
$$\begin{aligned}&\frac{\partial d_s}{\partial f_s} = \frac{\partial g}{\partial f_s}\textrm{sgn}\left( {\dot{r}}\right) \end{aligned}$$
(A21)
$$\begin{aligned}&\frac{\partial d_s}{\partial \nu _s} = \frac{\partial g}{\partial \nu _s}\textrm{sgn}\left( {\dot{r}}\right) \end{aligned}$$
(A22)
$$\begin{aligned}&\frac{\partial }{\partial \nu _s}\left( \frac{\partial d_s}{\partial f_c}\right) = \frac{\partial }{\partial f_c}\left( \frac{\partial d_s}{\partial \nu _s}\right) = \frac{\partial }{\partial \nu _s}\left( \frac{\partial g}{\partial f_c}\right) \textrm{sgn}\left( {\dot{r}}\right) \end{aligned}$$
(A23)
$$\begin{aligned}&\frac{\partial }{\partial \nu _s}\left( \frac{\partial d_s}{\partial f_s}\right) = \frac{\partial }{\partial f_s}\left( \frac{\partial d_s}{\partial \nu _s}\right) = \frac{\partial }{\partial \nu _s}\left( \frac{\partial g}{\partial f_s}\right) \textrm{sgn}\left( {\dot{r}}\right) \end{aligned}$$
(A24)
$$\begin{aligned}&\frac{\partial }{\partial \nu _s}\left( \frac{\partial d_s}{\partial \nu _s}\right) = \frac{\partial }{\partial \nu _s}\left( \frac{\partial g}{\partial \nu _s}\right) \textrm{sgn}\left( {\dot{r}}\right) \end{aligned}$$
(A25)

Pace 2: The first and second derivatives of the state y with respect to parameters \(\sigma _0\), \(\sigma _1\), \(f_c\), \(f_s\), and \(\nu _s\).

$$\begin{aligned}&\frac{\partial y}{\partial \sigma _0} = \int _{t_0}^{t}\left( h\left( d_s-y\right) -\sigma _0 h\frac{\partial y}{\partial \sigma _0}\right) \textrm{d}\tau \end{aligned}$$
(A26)
$$\begin{aligned}&\frac{\partial y}{\partial f_c} = a\int _{t_0}^{t}\left( \frac{\partial h}{\partial f_c}\left( d_s-y\right) + h\left( \frac{\partial d_s}{\partial f_c}-\frac{\partial y}{\partial f_c}\right) \right) \textrm{d}\tau \end{aligned}$$
(A27)
$$\begin{aligned}&\frac{\partial y}{\partial f_s} = a\int _{t_0}^{t}\left( \frac{\partial h}{\partial f_s}\left( d_s-y\right) + h\left( \frac{\partial d_s}{\partial f_s}-\frac{\partial y}{\partial f_s}\right) \right) \textrm{d}\tau \end{aligned}$$
(A28)
$$\begin{aligned}&\frac{\partial y}{\partial \nu _s} = a\int _{t_0}^{t}\left( \frac{\partial h}{\partial \nu _s}\left( d_s-y\right) + h\left( \frac{\partial d_s}{\partial \nu _s}-\frac{\partial y}{\partial \nu _s}\right) \right) \textrm{d}\tau \end{aligned}$$
(A29)
$$\begin{aligned}&\frac{\partial }{\partial \sigma _0}\left( \frac{\partial y}{\partial \sigma _0}\right) = -\int _{t_0}^{t}\left( 2h\frac{\partial y}{\partial \sigma _0}+\sigma _0h\frac{\partial }{\partial \sigma _0}\left( \frac{\partial y}{\partial \sigma _0}\right) \right) \textrm{d}\tau \end{aligned}$$
(A30)
$$\begin{aligned}&\frac{\partial }{\partial f_c}\left( \frac{\partial y}{\partial \sigma _0}\right) = \frac{\partial }{\partial \sigma _0}\left( \frac{\partial y}{\partial f_c}\right) \nonumber \\&= \int _{t_0}^{t}\left( \frac{\partial h}{\partial f_c}\left( d_s-y\right) +h\left( \frac{\partial d_s}{\partial f_c}-\frac{\partial y}{\partial f_c}\right) \right. \nonumber \\&\left. -a\frac{\partial h}{\partial f_c}\frac{\partial y}{\partial \sigma _0}-ah\frac{\partial }{\partial f_c}\left( \frac{\partial y}{\partial \sigma _0}\right) \right) \textrm{d}\tau \end{aligned}$$
(A31)
$$\begin{aligned}&\frac{\partial }{\partial f_s}\left( \frac{\partial y}{\partial \sigma _0}\right) = \frac{\partial }{\partial \sigma _0}\left( \frac{\partial y}{\partial f_s}\right) \nonumber \\&= \int _{t_0}^{t}\left( \frac{\partial h}{\partial f_s}\left( d_s-y\right) +h\left( \frac{\partial d_s}{\partial f_s}-\frac{\partial y}{\partial f_s}\right) \right. \nonumber \\&\left. -a\frac{\partial h}{\partial f_s}\frac{\partial y}{\partial \sigma _0}-ah\frac{\partial }{\partial f_s}\left( \frac{\partial y}{\partial \sigma _0}\right) \right) \textrm{d}\tau \end{aligned}$$
(A32)
$$\begin{aligned}&\frac{\partial }{\partial \nu _s}\left( \frac{\partial y}{\partial \sigma _0}\right) = \frac{\partial }{\partial \sigma _0}\left( \frac{\partial y}{\partial \nu _s}\right) \nonumber \\&= \int _{t_0}^{t}\left( \frac{\partial h}{\partial \nu _s}\left( d_s-y\right) +h\left( \frac{\partial d_s}{\partial \nu _s}-\frac{\partial y}{\partial \nu _s}\right) \right. \nonumber \\&\left. -a\frac{\partial h}{\partial \nu _s}\frac{\partial y}{\partial \sigma _0}-ah\frac{\partial }{\partial \nu _s}\left( \frac{\partial y}{\partial \sigma _0}\right) \right) \textrm{d}\tau \end{aligned}$$
(A33)
$$\begin{aligned}&\frac{\partial }{\partial f_c}\left( \frac{\partial y}{\partial f_c}\right) = a\int _{t_0}^{t}\left( \frac{\partial }{\partial f_c}\left( \frac{\partial h}{\partial f_c}\right) \left( d_s-y\right) \right. \nonumber \\&\left. +2\frac{\partial h}{\partial f_c}\left( \frac{\partial d_s}{\partial f_c}-\frac{\partial y}{\partial f_c}\right) \right. \nonumber \\&\left. -h\frac{\partial }{\partial f_c}\left( \frac{\partial y}{\partial f_c}\right) \right) \textrm{d}\tau \end{aligned}$$
(A34)
$$\begin{aligned}&\frac{\partial }{\partial f_s}\left( \frac{\partial y}{\partial f_c}\right) = \frac{\partial }{\partial f_c}\left( \frac{\partial y}{\partial f_s}\right) \nonumber \\&= a\int _{t_0}^{t}\left( \frac{\partial }{\partial f_s}\left( \frac{\partial h}{\partial f_c}\right) \left( d_s-y\right) \right. \nonumber \\&\left. +\frac{\partial h}{\partial f_c}\left( \frac{\partial d_s}{\partial f_s}-\frac{\partial y}{\partial f_s}\right) +\frac{\partial h}{\partial f_s}\left( \frac{\partial d_s}{\partial f_c}-\frac{\partial y}{\partial f_c}\right) \right. \nonumber \\&\quad \left. -h\frac{\partial }{\partial f_s}\left( \frac{\partial y}{\partial f_c}\right) \right) \textrm{d}\tau \end{aligned}$$
(A35)
$$\begin{aligned}&\frac{\partial }{\partial \nu _s}\left( \frac{\partial y}{\partial f_c}\right) = \frac{\partial }{\partial f_c}\left( \frac{\partial y}{\partial \nu _s}\right) = a\nonumber \\&\int _{t_0}^{t}\left( \frac{\partial }{\partial \nu _s}\left( \frac{\partial h}{\partial f_c}\right) \left( d_s-y\right) +\frac{\partial h}{\partial f_c}\left( \frac{\partial d_s}{\partial \nu _s}-\frac{\partial y}{\partial \nu _s}\right) \right. \nonumber \\&\left. +\frac{\partial h}{\partial f_s}\left( \frac{\partial d_s}{\partial f_c}-\frac{\partial y}{\partial f_c}\right) \right. \nonumber \\ {}&\quad \left. +h\left( \frac{\partial }{\partial \nu _s}\left( \frac{\partial d_s}{\partial f_c}\right) -\frac{\partial }{\partial \nu _s}\left( \frac{\partial y}{\partial f_c}\right) \right) \right) \textrm{d}\tau \end{aligned}$$
(A36)
$$\begin{aligned}&\frac{\partial }{\partial f_s}\left( \frac{\partial y}{\partial f_s}\right) = a\int _{t_0}^{t}\left( \frac{\partial }{\partial f_s}\left( \frac{\partial h}{\partial f_s}\right) \left( d_s-y\right) \right. \nonumber \\&\left. +2\frac{\partial h}{\partial f_s}\left( \frac{\partial d_s}{\partial f_s}-\frac{\partial y}{\partial f_s}\right) -h\frac{\partial }{\partial f_s}\left( \frac{\partial y}{\partial f_s}\right) \right) \textrm{d}\tau \end{aligned}$$
(A37)
$$\begin{aligned}&\frac{\partial }{\partial \nu _s}\left( \frac{\partial y}{\partial f_s}\right) = \frac{\partial }{\partial f_s}\left( \frac{\partial y}{\partial \nu _s}\right) \nonumber \\&= a\int _{t_0}^{t}\left( \frac{\partial }{\partial \nu _s}\left( \frac{\partial h}{\partial f_s}\right) \left( d_s-y\right) +\frac{\partial h}{\partial f_s}\left( \frac{\partial d_s}{\partial \nu _s}-\frac{\partial y}{\partial \nu _s}\right) \right. \nonumber \\&\left. +\frac{\partial h}{\partial \nu _s}\left( \frac{\partial d_s}{\partial f_s}-\frac{\partial y}{\partial f_s}\right) \right. \nonumber \\ {}&\quad \left. +h\left( \frac{\partial }{\partial \nu _s}\left( \frac{\partial d_s}{\partial f_s}\right) -\frac{\partial }{\partial \nu _s}\left( \frac{\partial y}{\partial f_s}\right) \right) \right) \textrm{d}\tau \end{aligned}$$
(A38)
$$\begin{aligned}&\frac{\partial }{\partial \nu _s}\left( \frac{\partial y}{\partial \nu _s}\right) = a\int _{t_0}^{t}\left( \frac{\partial }{\partial \nu _s}\left( \frac{\partial h}{\partial \nu _s}\right) \left( d_s-y\right) \right. \nonumber \\&\left. +2\frac{\partial h}{\partial \nu _s}\left( \frac{\partial d_s}{\partial \nu _s}-\frac{\partial y}{\partial \nu _s}\right) \right. \nonumber \\&\left. +h\left( \frac{\partial }{\partial \nu _s}\left( \frac{\partial d_s}{\partial \nu _s}\right) -\frac{\partial }{\partial \nu _s}\left( \frac{\partial y}{\partial \nu _s}\right) \right) \right) \textrm{d}\tau \end{aligned}$$
(A39)

Pace 3: The gradient G, i.e., the first derivatives of the nonlinear dynamic part \(f_z\) with respect to parameters \(\sigma _0\), \(\sigma _1\), \(f_c\), \(f_s\), and \(\nu _s\).

$$\begin{aligned} G&= \left[ \begin{array}{ccccc} \frac{\partial f_z}{\partial \sigma _0}&\frac{\partial f_z}{\partial \sigma _1}&\frac{\partial f_z}{\partial f_c}&\frac{\partial f_z}{\partial f_s}&\frac{\partial f_z}{\partial \nu _s} \end{array} \right] ^T \nonumber \\&\frac{\partial f_z}{\partial \sigma _0} = \left( 1-\sigma _1h\right) \frac{\partial y}{\partial \sigma _0} \end{aligned}$$
(A40)
$$\begin{aligned}&\frac{\partial f_z}{\partial \sigma _1} = h\left( d_s-y\right) \end{aligned}$$
(A41)
$$\begin{aligned}&\frac{\partial f_z}{\partial f_c} = \frac{\partial y}{\partial f_c}+\sigma _1\left( \frac{\partial h}{\partial f_c}\left( d_s-y\right) +h\left( \frac{\partial d_s}{\partial f_c}-\frac{\partial y}{\partial f_c}\right) \right) \end{aligned}$$
(A42)
$$\begin{aligned}&\frac{\partial f_z}{\partial f_s} = \frac{\partial y}{\partial f_s}+\sigma _1\left( \frac{\partial h}{\partial f_s}\left( d_s-y\right) +h\left( \frac{\partial d_s}{\partial f_s}-\frac{\partial y}{\partial f_s}\right) \right) \end{aligned}$$
(A43)
$$\begin{aligned}&\frac{\partial f_z}{\partial \nu _s} = \frac{\partial y}{\partial \nu _s}+\sigma _1\left( \frac{\partial h}{\partial \nu _s}\left( d_s-y\right) +h\left( \frac{\partial d_s}{\partial \nu _s}-\frac{\partial y}{\partial \nu _s}\right) \right) \end{aligned}$$
(A44)

Pace 4: The Hessian matrix H, i.e., the second derivatives of the nonlinear dynamic part \(f_z\) with respect to parameters \(\sigma _0\), \(\sigma _1\), \(f_c\), \(f_s\), and \(\nu _s\).

Table 6 Parameter training results of six groups with different initial conditions
Table 7 RMSE of friction prediction of six groups within three speed intervals (\(10^{-3}\) Nm)
Table 8 One-way ANOVA results
$$\begin{aligned} H&= \frac{\partial ^2 f_z}{\partial \theta \partial \theta ^T}\nonumber \\ {}&= \left[ \begin{array}{ccccc} \frac{\partial ^2 f_z}{\partial \sigma _0^2} &{}\quad \frac{\partial ^2 f_z}{\partial \sigma _1\partial \sigma _0}&{}\quad \frac{\partial ^2 f_z}{\partial f_c\partial \sigma _0}&{}\quad \frac{\partial ^2 f_z}{\partial f_s\partial \sigma _0}&{}\quad \frac{\partial ^2 f_z}{\partial \nu _s\partial \sigma _0} \\ \frac{\partial ^2 f_z}{\partial \sigma _0\partial \sigma _1}&{}\quad \frac{\partial ^2 f_z}{\partial \sigma _1^2}&{}\quad \frac{\partial ^2 f_z}{\partial f_c\partial \sigma _1}&{}\quad \frac{\partial ^2 f_z}{\partial f_s\partial \sigma _1}&{}\quad \frac{\partial ^2 f_z}{\partial \nu _s\partial \sigma _1} \\ \frac{\partial ^2 f_z}{\partial \sigma _0\partial f_c}&{}\quad \frac{\partial ^2 f_z}{\partial \sigma _1\partial f_c}&{}\quad \frac{\partial ^2 f_z}{\partial f_c^2}&{}\quad \frac{\partial ^2 f_z}{\partial f_s\partial f_c}&{}\quad \frac{\partial ^2 f_z}{\partial \nu _s\partial f_c} \\ \frac{\partial ^2 f_z}{\partial \sigma _0\partial f_s}&{}\quad \frac{\partial ^2 f_z}{\partial \sigma _1\partial f_s}&{}\quad \frac{\partial ^2 f_z}{\partial f_c\partial f_s}&{}\quad \frac{\partial ^2 f_z}{\partial f_s^2}&{}\quad \frac{\partial ^2 f_z}{\partial \nu _s\partial f_s} \\ \frac{\partial ^2 f_z}{\partial \sigma _0\partial \nu _s}&{}\quad \frac{\partial ^2 f_z}{\partial \sigma _1\partial \nu _s}&{}\quad \frac{\partial ^2 f_z}{\partial f_c\partial \nu _s}&{}\quad \frac{\partial ^2 f_z}{\partial f_s\partial \nu _s}&{}\quad \frac{\partial ^2 f_z}{\partial \nu _s^2} \end{array} \right] \nonumber \\&\frac{\partial ^2 f_z}{\partial \sigma _0^2} = \left( 1-\sigma _1h\right) \frac{\partial }{\partial \sigma _0}\left( \frac{\partial y}{\partial \sigma _0}\right) \end{aligned}$$
(A45)
$$\begin{aligned}&\frac{\partial ^2 f_z}{\partial \sigma _1\partial \sigma _0} = \frac{\partial ^2 f_z}{\partial \sigma _0\partial \sigma _1} = -h\frac{\partial y}{\partial \sigma _0} \end{aligned}$$
(A46)
$$\begin{aligned}&\frac{\partial ^2 f_z}{\partial f_c\partial \sigma _0} = \frac{\partial ^2 f_z}{\partial \sigma _0\partial f_c} = \left( 1-\sigma _1h\right) \frac{\partial }{\partial f_c}\left( \frac{\partial y}{\partial \sigma _0}\right) \nonumber \\ {}&\quad - \sigma _1\frac{\partial h}{\partial f_c}\frac{\partial y}{\partial \sigma _0} \end{aligned}$$
(A47)
$$\begin{aligned}&\frac{\partial ^2 f_z}{\partial f_s\partial \sigma _0} = \frac{\partial ^2 f_z}{\partial \sigma _0\partial f_s} = \left( 1-\sigma _1h\right) \frac{\partial }{\partial f_s}\left( \frac{\partial y}{\partial \sigma _0}\right) \nonumber \\ {}&\quad - \sigma _1\frac{\partial h}{\partial f_s}\frac{\partial y}{\partial \sigma _0} \end{aligned}$$
(A48)
$$\begin{aligned}&\frac{\partial ^2 f_z}{\partial \nu _s\partial \sigma _0} = \frac{\partial ^2 f_z}{\partial \sigma _0\partial \nu _s} = \left( 1-\sigma _1h\right) \frac{\partial }{\partial \nu _s}\left( \frac{\partial y}{\partial \sigma _0}\right) \nonumber \\ {}&\quad - \sigma _1\frac{\partial h}{\partial \nu _s}\frac{\partial y}{\partial \sigma _0} \end{aligned}$$
(A49)
$$\begin{aligned}&\frac{\partial ^2 f_z}{\partial \sigma _1^2} = 0 \end{aligned}$$
(A50)
$$\begin{aligned}&\frac{\partial ^2 f_z}{\partial f_c\partial \sigma _1} = \frac{\partial ^2 f_z}{\partial \sigma _1\partial f_c} = \frac{\partial h}{\partial f_c}\left( d_s-y\right) +h\left( \frac{\partial d_s}{\partial f_c}-\frac{\partial y}{\partial f_c}\right) \end{aligned}$$
(A51)
$$\begin{aligned}&\frac{\partial ^2 f_z}{\partial f_s\partial \sigma _1} = \frac{\partial ^2 f_z}{\partial \sigma _1\partial f_s} = \frac{\partial h}{\partial f_s}\left( d_s-y\right) +h\left( \frac{\partial d_s}{\partial f_s}-\frac{\partial y}{\partial f_s}\right) \end{aligned}$$
(A52)
$$\begin{aligned}&\frac{\partial ^2 f_z}{\partial \nu _s\partial \sigma _1} = \frac{\partial ^2 f_z}{\partial \sigma _1\partial \nu _s} = \frac{\partial h}{\partial \nu _s}\left( d_s-y\right) +h\left( \frac{\partial d_s}{\partial \nu _s}-\frac{\partial y}{\partial \nu _s}\right) \end{aligned}$$
(A53)
$$\begin{aligned}&\frac{\partial ^2 f_z}{\partial f_c^2} = \frac{\partial }{\partial f_c}\left( \frac{\partial y}{\partial f_c}\right) \nonumber \\ {}&\quad +\sigma _1\left( \frac{\partial }{\partial f_c}\left( \frac{\partial h}{\partial f_c}\right) \left( d_s-y\right) \right. \nonumber \\&\left. +2\frac{\partial h}{\partial f_c}\left( \frac{\partial d_s}{\partial f_c}-\frac{\partial y}{\partial f_c}\right) -h\frac{\partial }{\partial f_c}\left( \frac{\partial y}{\partial f_c}\right) \right) \end{aligned}$$
(A54)
$$\begin{aligned}&\frac{\partial ^2 f_z}{\partial f_s\partial f_c} = \frac{\partial ^2 f_z}{\partial f_c\partial f_s} = \frac{\partial }{\partial f_s}\left( \frac{\partial y}{\partial f_c}\right) \nonumber \\ {}&\quad +\sigma _1\left( \frac{\partial }{\partial f_s}\left( \frac{\partial h}{\partial f_c}\right) \left( d_s-y\right) \right. \nonumber \\&\left. +\frac{\partial h}{\partial f_c}\left( \frac{\partial d_s}{\partial f_s}-\frac{\partial y}{\partial f_s}\right) \right. \nonumber \\ {}&\quad \left. +\frac{\partial h}{\partial f_s}\left( \frac{\partial d_s}{\partial f_c}-\frac{\partial y}{\partial f_c}\right) -h\frac{\partial }{\partial f_s}\left( \frac{\partial y}{\partial f_c}\right) \right) \end{aligned}$$
(A55)
$$\begin{aligned}&\frac{\partial ^2 f_z}{\partial \nu _s\partial f_c} = \frac{\partial ^2 f_z}{\partial f_c\partial \nu _s} = \frac{\partial }{\partial \nu _s}\left( \frac{\partial y}{\partial f_c}\right) \nonumber \\&+\sigma _1\left( \frac{\partial }{\partial \nu _s}\left( \frac{\partial h}{\partial f_c}\right) \left( d_s-y\right) \right. \nonumber \\&\left. +\frac{\partial h}{\partial f_c}\left( \frac{\partial d_s}{\partial \nu _s}-\frac{\partial y}{\partial \nu _s}\right) +\frac{\partial h}{\partial \nu _s}\left( \frac{\partial d_s}{\partial f_c}-\frac{\partial y}{\partial f_c}\right) \right. \nonumber \\&\left. +h\left( \frac{\partial }{\partial \nu _s}\left( \frac{\partial d_s}{\partial f_c}\right) -\frac{\partial }{\partial \nu _s}\left( \frac{\partial y}{\partial f_c}\right) \right) \right) \end{aligned}$$
(A56)
$$\begin{aligned}&\frac{\partial ^2 f_z}{\partial f_s^2} = \frac{\partial }{\partial f_s}\left( \frac{\partial y}{\partial f_s}\right) +\sigma _1\left( \frac{\partial }{\partial f_s}\left( \frac{\partial h}{\partial f_s}\right) \left( d_s-y\right) \right. \nonumber \\&\left. +2\frac{\partial h}{\partial f_s}\left( \frac{\partial d_s}{\partial f_s}-\frac{\partial y}{\partial f_s}\right) \right. \nonumber \\&\left. -h\frac{\partial }{\partial f_s}\left( \frac{\partial y}{\partial f_s}\right) \right) \end{aligned}$$
(A57)
$$\begin{aligned}&\frac{\partial ^2 f_z}{\partial \nu _s\partial f_s} = \frac{\partial ^2 f_z}{\partial f_s\partial \nu _s} = \frac{\partial }{\partial \nu _s}\left( \frac{\partial y}{\partial f_s}\right) \nonumber \\&\quad +\sigma _1\left( \frac{\partial }{\partial \nu _s}\left( \frac{\partial h}{\partial f_s}\right) \left( d_s-y\right) \right. \nonumber \\&\left. +\frac{\partial h}{\partial f_s}\left( \frac{\partial d_s}{\partial \nu _s}-\frac{\partial y}{\partial \nu _s}\right) +\frac{\partial h}{\partial \nu _s}\left( \frac{\partial d_s}{\partial f_s}-\frac{\partial y}{\partial f_s}\right) \right. \nonumber \\&\quad \left. +h\left( \frac{\partial }{\partial \nu _s}\left( \frac{\partial d_s}{\partial f_s}\right) -\frac{\partial }{\partial \nu _s}\left( \frac{\partial y}{\partial f_s}\right) \right) \right) \end{aligned}$$
(A58)
$$\begin{aligned}&\frac{\partial ^2 f_z}{\partial \nu _s^2} = \frac{\partial }{\partial \nu _s}\left( \frac{\partial y}{\partial \nu _s}\right) +\sigma _1\left( \frac{\partial }{\partial \nu _s}\left( \frac{\partial h}{\partial \nu _s}\right) \left( d_s-y\right) \right. \nonumber \\&\quad \left. +2\frac{\partial h}{\partial \nu _s}\left( \frac{\partial d_s}{\partial \nu _s}-\frac{\partial y}{\partial \nu _s}\right) \right. \nonumber \\&\left. +h\left( \frac{\partial }{\partial \nu _s}\left( \frac{\partial d_s}{\partial \nu _s}\right) -\frac{\partial }{\partial \nu _s}\left( \frac{\partial y}{\partial \nu _s}\right) \right) \right) \end{aligned}$$
(A59)

Appendix B Simulation results with different initial conditions

The model is trained with six different initial conditions, and other simulation conditions are the same as in Sect. 4. The results are shown in Table 6. To evaluate the training performance, the command trajectory after 120 s is divided into three intervals according to velocity command \({\dot{r}}\): high-speed region (\(\vert {\dot{r}}\vert>\)0.1 rad/s), low-speed region (0.05 rad/s\(<\vert {\dot{r}}\vert \le \)0.1 rad/s) and reversal region (\(\vert {\dot{r}}\vert \le \)0.05 rad/s). The root mean square errors (RMSEs) of friction prediction in each interval are calculated in Table 7.

We used a one-way analysis of variance (ANOVA) to verify whether there were significant differences in errors among the six groups. First, the equal variance assumption is guaranteed by Bartlett’s test (\(p=0.86\)). The results are shown in Table 8 and Fig. 13. Since P-value\(>0.05\), there is no significant difference between the friction prediction errors of six groups of parameters.

Fig. 13
figure 13

RMSE of friction prediction of six different parameter sets

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Jin, H., Yin, H. et al. Friction dynamics identification based on quadratic approximation of LuGre model. Nonlinear Dyn 112, 6357–6377 (2024). https://doi.org/10.1007/s11071-024-09331-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09331-2

Keywords

Navigation