Skip to main content
Log in

Ergodic and resonant torus doubling bifurcation in a three-dimensional quadratic map

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We consider the rich dynamics and bifurcations exhibited by a three-dimensional quadratic map. Torus doubling bifurcations are central to bifurcation theory. Such bifurcations can only occur in a higher dimensional map of dimensions greater than or equal to three. After subsequent doublings, formation of Shilnikov attractors and hyperchaotic attractors are usually observed. It is shown that the map under consideration shows both resonant and ergodic torus doubling bifurcation. We show that the system exhibits resonant torus doubling bifurcation in which the doubled mode-locked periodic orbits lies on a Möbius strip. Additionally, we also illustrate the doubling of ergodic tori and analyze the bifurcation via the use of the second Poincaré section and the method of Lyapunov bundles. The analysis involves the techniques of construction of one-dimensional manifolds, a one-parameter continuation of saddle periodic orbits, and multi-dimensional Newton–Raphson method to locate the saddle periodic orbits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are available within the article.

References

  1. Ren, C., Zhou, J., Liu, C.: Chaos control of a multi-dimensional chaotic mapping system by modified stability transformation method. J. Vibroeng. 19(2), 1103–1115 (2017)

    Article  Google Scholar 

  2. Kaneko, K.: Doubling of torus. Progress Theoret. Phys. 69(6), 1806–1810 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  3. Anishchenko, V., Nikolaev, S., Strelkova, G.: Oscillator of quasiperiodic oscillations. Two-dimensional torus doubling bifurcation. In: International Symposium on Nonlinear Theory and its Applications, pp. 23–25 (2005)

  4. Muni, S.S., Banerjee, S.: Bifurcations of mode-locked periodic orbits in three-dimensional maps. Int. J. Bifurc. Chaos 33(10), 2330025 (2023)

    Article  MathSciNet  Google Scholar 

  5. Sekikawa, M., Inaba, N.: Chaos after accumulation of torus doublings. Int. J. Bifurc. Chaos 31(01), 2150009 (2021)

    Article  MathSciNet  Google Scholar 

  6. Sekikawa, M., Miyoshi, T., Inaba, N.: Successive torus doubling. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 48(1), 28–34 (2001)

    Article  Google Scholar 

  7. Los, J.E.: Nonnormally hyperbolic invariant curves for maps in R3 and doubling bifurcation. Nonlinearity 2(1), 149 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  8. Broer, H.W., Huitema, G.B., Takens, F., Braaksma, B.L.J.: Unfoldings and Bifurcations of Quasiperiodic Tori, p. 421. American Mathematical Society (1990)

  9. Broer, H.W., Huitema, G.B., Sevryuk, M.B.: Quasi-Periodic Tori in Families of Dynamical Systems: Order Amidst Chaos, p. 421 . American Mathematical Society (1996)

  10. Zhusubaliyev, Z.T., Avrutin, V., Medvedev, A.: Doubling of a closed invariant curve in an impulsive Goodwin’s oscillator with delay. Chaos Solitons Fractals 153, 111571 (2021)

    Article  MathSciNet  Google Scholar 

  11. Muni, S.S.: Mode-locked orbits, doubling of invariant curves in discrete Hindmarsh-Rose neuron model. Physica Scr. 98, 1–9 (2023)

  12. Ashwin, P., Swift, J.W.: Torus doubling in four weakly coupled oscillators. Int. J. Bifurc. Chaos 05(01), 231–241 (1995)

    Article  MathSciNet  Google Scholar 

  13. Nikolaev, S.M., Anishchenko, V.S.: Generator of quasi-periodic oscillations featuring two-dimensional torus doubling bifurcations. Tech. Phys. Lett. 31, 853–855 (2005)

    Article  Google Scholar 

  14. Stankevich, N.V., Shchegoleva, N.A., Sataev, I.R., Kuznetsov, A.P.: Three-dimensional torus breakdown and Chaos with two zero Lyapunov exponents in coupled radio-physical generators. J. Comput. Nonlinear Dyn. 15(11), 111001 (2020)

    Article  Google Scholar 

  15. Ding, W.-C., Xie, J.H., Sun, Q.G.: Interaction of Hopf and period doubling bifurcations of a vibro-impact system. J. Sound Vib. 275(1–2), 27–45 (2004)

    Article  ADS  Google Scholar 

  16. Brandl, A., Geisel, T., Prettl, W.: Oscillations and chaotic current fluctuations in n-GaAs. Europhys. Lett. (EPL) 3(4), 401–406 (1987)

    Article  ADS  CAS  Google Scholar 

  17. Molteno, T.C.A., Tufillaro, N.B.: Torus doubling and chaotic string vibrations: experimental results. J. Sound Vib. 137(2), 327–330 (1990)

  18. Bakri, T., Kuznetsov, Y.A., Verhulst, F.: Torus bifurcations in a mechanical system. J. Dyn. Differ. Equ. 27, 371–403 (2015)

    Article  MathSciNet  Google Scholar 

  19. Frueholz, R.P., Camparo, J.C.: Attractor geometry of a quasiperiodically perturbed, two-level atom. Phys. Rev. A. 43, 338–345 (1996)

    Google Scholar 

  20. Shena, J., Lazarides, N., Hizanidis, J.: Multi-branched resonances, chaos through quasiperiodicity, and asymmetric states in a superconducting dimer. Chaos Interdiscip. J. Nonlinear Sci. 30(12), 123127 (2020)

    Article  MathSciNet  CAS  Google Scholar 

  21. Gonchenko, A.S., Gonchenko, S.V., Turaev, D.: Doubling of invariant curves and chaos in three-dimensional diffeomorphisms. Chaos Interdiscip. J. Nonlinear Sci. 31(11), 113130 (2021)

    Article  MathSciNet  CAS  Google Scholar 

  22. Kamiyama, K., Komuro, M., Endo, T., Aihara, K.: Classification of bifurcations of quasi-periodic solutions using lyapunov bundles. Int. J. Bifurc. Chaos 24(12), 1430034 (2014)

    Article  MathSciNet  Google Scholar 

  23. Kolemen, E., Kasdin, N.J., Gurfil, P.: Multiple poincaré sections method for finding the quasiperiodic orbits of the restricted three body problem. Celest. Mech. Dyn. Astr. 112(11), 47–74 (2012)

    Article  ADS  Google Scholar 

  24. Banerjee, S., Giaouris, D., Missailidis, P., Imrayed, O.: Local bifurcations of a quasiperiodic orbit. Int. J. Bifurc. Chaos 22(12), 1250289 (2012)

    Article  MathSciNet  Google Scholar 

  25. Gallas, J.A.C.: Dissecting shrimps: results for some one-dimensional physical systems. Phys. A 202, 196–223 (1994)

    Article  MathSciNet  Google Scholar 

  26. Gardini, L., Sushko, I.: Doubling bifurcation of a closed invariant curve in 3d maps. ESAIM Proc. 36, 180–188 (2012)

    Article  MathSciNet  Google Scholar 

  27. Hilborn, R.C.: Lyapunov exponents: a tool to explore complex dynamics. Phys. Today 70(3, 03), 62–63 (2017)

    Article  Google Scholar 

  28. Giancarlo, B., Luigi, G., Antonio, G., Jean-Marie, S.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 1: theory. Meccanica 15, 9–20 (1980)

    Article  Google Scholar 

  29. Routes to chaos. Encyclopedia of Mathematics

  30. Newhouse, S., Ruelle, D., Takens, F.: Occurrence of strange Axiom A attractors near quasiperiodic flows on \(T^{m}\),\(\, m\ge 3\). Commun. Math. Phys. 64(1), 35–40 (1978)

    Article  ADS  Google Scholar 

  31. Shykhmamedov, A., Karatetskaia, E., Kazakov, A., Stankevich, N.: Scenarios for the creation of hyperchaotic attractors in 3d maps. Nonlinearity 36(7), 3501 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  32. Muni, S.S., Provata, A.: Chimera states in ring-star network of Chua circuits. Nonlinear Dyn. 101, 2509–2521 (2020)

    Article  Google Scholar 

  33. Shepelev, I.A., Bukh, A.V., Muni, S.S., Anishchenko, V.S.: Role of solitary states in forming spatiotemporal patterns in a 2d lattice of Van der Pol oscillators. Chaos Solitons Fractals 135, 109725 (2020)

    Article  MathSciNet  Google Scholar 

  34. Shepelev, I.A., Muni, S.S., Schöll, E., Strelkova, G.I.: Repulsive inter-layer coupling induces anti-phase synchronization. Chaos 31, 063116 (2021)

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  35. Rybalova, E., Muni, S.S., Strelkova, G.: Transition from chimera/solitary states to traveling waves. Chaos Interdiscip. J. Nonlinear Sci. 33(3), 033104, 03 (2023)

  36. Muni, S.S., Rajagopal, K., Karthikeyan, A., Arun, S.: Discrete hybrid Izhikevich neuron model: Nodal and network behaviours considering electromagnetic flux coupling. Chaos Solitons Fractals 155, 111759 (2022)

    Article  Google Scholar 

  37. Muni, S.S., Fatoyinbo, H.O., Ghosh, I.: Dynamical effects of electromagnetic flux on Chialvo neuron map: Nodal and network behaviors. Int. J. Bifurc. Chaos 32(09), 2230020 (2022)

Download references

Acknowledgements

S.S.M acknowledges fruitful discussions with Professor Motomasa Komuro on the method of Lyapunov bundles. S.S.M also acknowledges insightful discussions with Professor Alexey Kazakov on two-parameter continuation techniques.

Funding

No funding is associated in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sishu Shankar Muni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muni, S.S. Ergodic and resonant torus doubling bifurcation in a three-dimensional quadratic map. Nonlinear Dyn 112, 4651–4661 (2024). https://doi.org/10.1007/s11071-024-09284-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09284-6

Keywords

Navigation