Skip to main content
Log in

A hyperchaotic memristive system with extreme multistability and conservativeness

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Comparing with dissipative systems, conservative systems have distinguished advantages in information processing and secure communication. It is of practical importance and theoretical significance to design conservative chaotic systems based on memristors due to their special features of complexity and flexibility. In this paper, a novel conservative hyperchaotic memristor system is proposed. The rich dynamics of the system, including extreme multistability and hyperchaos, are analyzed by using phase portraits, time series, bifurcation diagrams and Lyapunov exponents, and confirming the system is conservative. Based on the Hamiltonian theory, a specific energy function of the system is constructed and the generation mechanism of the extreme multistability is revealed and analyzed. Interestingly, a special heart-shaped attractor is found from the system. Finally, the theoretical results are verified and demonstrated through physical circuit implementation, demonstrating its potential for future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Google Scholar 

  2. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80–83 (2008)

    ADS  CAS  PubMed  Google Scholar 

  3. Jahanshahi, H., Yousefpour, A., Munoz-Pacheco, J.M., Kacar, S., Pham, V.T., Alsaadi, F.E.: A new fractional-order hyperchaotic memristor oscillator: dynamic analysis, robust adaptive synchronization, and its application to voice encryption. Appl. Math. Comput. 383, 125310 (2020)

    MathSciNet  Google Scholar 

  4. Li, J.F., Jahanshahi, H., Kacar, S., Chu, Y.M., Gomez-Aguilar, J.F., Alotaibi, N.D., Alharbi, K.H.: On the variable-order fractional memristor oscillator: data security applications and synchronization using a type-2 fuzzy disturbance observer-based robust control. Chaos Solitons Fractals 145, 110681 (2021)

    MathSciNet  Google Scholar 

  5. Borghetti, J., Snider, G.S., Kuekes, P.J., Yang, J.J., Stewart, D.R., Williams, R.S.: “Memristive” switches enable “stateful” logic operations via material implication. Nature 464(7290), 873–876 (2010)

    ADS  CAS  PubMed  Google Scholar 

  6. Pershin, Y.V., Di Ventra, M.: Experimental demonstration of associative memory with memristive neural networks. Neural Netw. 23(7), 881–886 (2010)

    PubMed  Google Scholar 

  7. Lin, H.R., Wang, C.H., Deng, Q.L., Xu, C., Deng, Z.K., Zhou, C.: Review on chaotic dynamics of memristive neuron and neural network. Nonlinear Dyn. 106(1), 959–973 (2021)

    Google Scholar 

  8. Witrisal, K.: Memristor-based stored-reference receiver–the UWB solution? Electron. Lett. 45(14), 713–714 (2009)

    ADS  Google Scholar 

  9. Chang, H., Li, Y.X., Yuan, F., Chen, G.R.: Extreme multistability with hidden attractors in a simplest memristor-based circuit. Int. J. Bifurcation Chaos 29(6), 1950086 (2019)

    ADS  MathSciNet  Google Scholar 

  10. Zhu, M.H., Wang, C.H., Deng, Q.L., Hong, Q.H.: Locally active memristor with three coexisting pinched hysteresis loops and its emulator circuit. Int. J. Bifurcation Chaos 30(13), 2050184 (2020)

    ADS  MathSciNet  Google Scholar 

  11. Chang, H., Wang, Z., Li, Y.X., Chen, G.R.: Dynamic analysis of a bistable bi-local active memristor and its associated oscillator system. Int. J. Bifurc. Chaos 28(8), 1850105 (2018)

    MathSciNet  Google Scholar 

  12. Chang, H., Li, Y.X., Chen, G.R.: A novel memristor-based dynamical system with multi-wing attractors and symmetric periodic bursting. Chaos 30(4), 043110 (2020)

    ADS  MathSciNet  PubMed  Google Scholar 

  13. Chang, H., Li, Y.X., Chen, G.R., Yuan, F.: Extreme multistability and complex dynamics of a memristor-based chaotic system. Int. J. Bifurc. Chaos 30(8), 2030019 (2020)

    MathSciNet  Google Scholar 

  14. Dong, E.Z., Yuan, M.F., Dua, S.Z., Chen, Z.Q.: A new class of Hamiltonian conservative chaotic systems with multistability and design of pseudo-random number generator. Appl. Math. Model. 73, 40–71 (2019)

    MathSciNet  Google Scholar 

  15. Vaidyanathan, S., Volos, C.: Analysis and adaptive control of a novel 3-D conservative no-equilibrium chaotic system. Arch. Control Sci. 25(3), 333–353 (2015)

    MathSciNet  Google Scholar 

  16. Cang, S.J., Li, Y., Kang, Z.J., Wang, Z.H.: A generic method for constructing n-fold covers of 3D conservative chaotic systems. Chaos 30(3), 033103 (2020)

    ADS  MathSciNet  PubMed  Google Scholar 

  17. Qi, G.Y., Hu, J.B.: Modeling of both energy and volume conservative chaotic systems and their mechanism analyses. Commun. Nonlinear Sci. Numer. Simul. 84, 105171 (2020)

    MathSciNet  Google Scholar 

  18. Singh, J.P., Roy, B.K.: Five new 4-D autonomous conservative chaotic systems with various type of non-hyperbolic and lines of equilibria. Chaos Solitons Fractals 114, 81–91 (2018)

    ADS  MathSciNet  Google Scholar 

  19. Cang, S.J., Wu, A.G., Wang, Z.H., Chen, Z.Q.: Four-dimensional autonomous dynamical systems with conservative flows: two-case study. Nonlinear Dyn. 89(4), 2495–2508 (2017)

    MathSciNet  Google Scholar 

  20. Wang, N., Zhang, G.S., Bao, H.: Infinitely many coexisting conservative flows in a 4D conservative system inspired by LC circuit. Nonlinear Dyn. 99(4), 3197–3216 (2020)

    Google Scholar 

  21. Wu, A.G., Cang, S.J., Zhang, R.Y., Wang, Z.H., Chen, Z.Q.: Hyperchaos in a conservative system with nonhyperbolic fixed points. Complexity 2018, 9430637 (2018)

    Google Scholar 

  22. Leng, X.X., Du, B.X., Gu, S.Q., He, S.B.: Novel dynamical behaviors in fractional-order conservative hyperchaotic system and DSP implementation. Nonlinear Dyn. 109(2), 1167–1186 (2022)

    Google Scholar 

  23. Bao, B.C., Jiang, T., Wang, G.Y., Jin, P.P., Bao, H., Chen, M.: Two-memristor-based Chua’s hyperchaotic circuit with plane equilibrium and its extreme multistability. Nonlinear Dyn. 89(2), 1157–1171 (2017)

    Google Scholar 

  24. Bao, H., Liu, W.B., Chen, M.: Hidden extreme multistability and dimensionality reduction analysis for an improved non-autonomous memristive FitzHugh-Nagumo circuit. Nonlinear Dyn. 96(3), 1879–1894 (2019)

    Google Scholar 

  25. Sun, J.Y., Li, C.B., Lu, T.A., Akgul, A., Min, F.H.: A memristive chaotic system with hypermultistability and its application in image encryption. IEEE Access 8, 139289–139298 (2020)

    Google Scholar 

  26. Bao, B.C., Bao, H., Wang, N., Chen, M., Xu, Q.: Hidden extreme multistability in memristive hyperchaotic system. Chaos Solitons Fractals 94, 102–111 (2018)

    ADS  MathSciNet  Google Scholar 

  27. Zhou, X.J., Li, C.B., Li, Y.X., Lu, X., Lei, T.F.: An amplitude-controllable 3-D hyperchaotic map with homogenous multistability. Nonlinear Dyn. 105(2), 1843–1857 (2021)

    Google Scholar 

  28. Zhang, Y.Z., Liu, Z., Wu, H.G., Chen, S.Y., Bao, B.C.: Two-memristor-based chaotic system and its extreme multistability reconstitution via dimensionality reduction analysis. Chaos Solitons Fractals 127, 354–363 (2019)

    ADS  MathSciNet  CAS  Google Scholar 

  29. Chen, M., Sun, M.X., Bao, H., Hu, Y.H., Bao, B.C.: Flux-charge analysis of two-memristor-based Chua’s circuit: dimensionality decreasing model for detecting extreme multistability. IEEE Trans. Ind. Electron. 67(3), 2197–2206 (2019)

    Google Scholar 

  30. Ngonghala, C.N., Feudel, U., Showalter, K.: Extreme multistability in a chemical model system. Phys. Rev. E 5(2), 056206 (2011)

    ADS  Google Scholar 

  31. Almatroud, A.O.: Extreme multistability of a fractional-order discrete-time neural network. Fractal Fract. 5(4), 202 (2022)

    Google Scholar 

  32. Sarasola, C., D’Anjou, A., Torrealdea, F.J., Moujahid, A.: Energy-like functions for some dissipative chaotic systems. Int. J. Bifurcation Chaos 15(8), 2507–2521 (2005)

    ADS  MathSciNet  Google Scholar 

  33. Sarasola, C., Torrealdea, F.J., D’Anjou, A., Moujahid, A., Grana, M.: Energy balance in feedback synchronization of chaotic systems. Phys. Rev. E 69(1Pt1), 011606 (2004)

    ADS  CAS  Google Scholar 

  34. Torrealdea, F.J., D’Anjou, A., Grana, M., Sarasola, C.: Energy aspects of the synchronization of model neurons. Phys. Rev. E 74(1Pt1), 011905 (2006)

    ADS  CAS  Google Scholar 

  35. Torrealdea, F.J., Sarasola, C., D’Anjou, A.: Energy consumption and information transmission in model neurons. Chaos Solitons Fractals 40(1), 60–68 (2009)

    ADS  MathSciNet  Google Scholar 

  36. Torrealdea, F.J., Sarasola, C., D’Anjou, A., Moujahid, A., De Mendizabal, N.V.: Energy efficiency of information transmission by electrically coupled neurons. Biosystems 97(1), 60–71 (2009)

    PubMed  Google Scholar 

  37. Song, X.L., Jin, W.Y., Ma, J.: Energy dependence on the electric activities of a neuron. Chin. Phys. B 24(12), 128710 (2015)

    ADS  Google Scholar 

  38. Li, R.H., Wang, Z.H., Dong, E.Z.: A new locally active memristive synapse-coupled neuron model. Nonlinear Dyn. 104(4), 4459–4475 (2021)

    Google Scholar 

  39. An, X.L., Zhang, L.: Dynamics analysis and Hamilton energy control of a generalized Lorenz system with hidden attractor. Nonlinear Dyn. 94(4), 2995–3010 (2018)

    Google Scholar 

  40. Cang, S.J., Wu, A.G., Wang, Z.H., Chen, Z.Q.: Distinguishing Lorenz and Chen systems based upon Hamiltonian energy theory. Int. J. Bifurc. Chaos 27(2), 1750024 (2017)

    MathSciNet  Google Scholar 

  41. Chua, L.: Everything you wish to know about memristors but are afraid to ask. Radioengineering 24(2), 319–368 (2015)

    Google Scholar 

  42. Zhou, X.L.: On Helmholtz’s theorem and its interpretations. J. Electromagn. Waves Appl. 21(4), 471–483 (2007)

    ADS  Google Scholar 

  43. Kobe, Donald, H.: Helmholtz’s theorem revisited. Am. J. Phys. 54(6), 552–554 (1998)

    ADS  MathSciNet  Google Scholar 

  44. Wu, J.N., Wang, L.D., Chen, G.R., Duan, S.K.: A memristive chaotic system with heart-shaped attractors and its implementation. Chaos Solitons Fractals 92, 20–29 (2016)

    ADS  MathSciNet  Google Scholar 

  45. Prasad, A.: Existence of perpetual points in nonlinear dynamical systems and its applications. Int. J. Bifurc. Chaos 25(2), 1530005 (2015)

    MathSciNet  Google Scholar 

  46. Jafari, S., Nazarimehr, F., Sprott, J.C., Golpayegani, S.M.R.H.: Limitation of perpetual points for confirming conservation in dynamical systems. Int. J. Bifurc. Chaos 25(13), 1550182 (2016)

    MathSciNet  Google Scholar 

  47. Sprott, J.C.: Some simple chaotic flows. Phys. Rev. E 50(2), R647–R650 (1994)

    ADS  MathSciNet  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 61973200, 61903230), the Shandong Provincial Natural Science Foundation (No. ZR202103010716), and the Taishan Scholar Project of Shandong.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Chang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability

The data that support the findings of this study are available from the corresponding author, Hui Chang, upon reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Conservativeness analysis of the hyperchaotic memristive system

Based on the permanent point theory [45], the equilibrium point \(({E}_{EP})\) of the system is determined by taking the time derivative of each state variable on the left-hand side of Eq. (2.4) and setting it to be zero.

If the first derivative of the system with respect to time is regarded as velocity, then the second derivative of the system with respect to time is acceleration. The permanent point \(({E}_{PP})\) is the point where the acceleration of the system is zero, but the velocity is not zero. The formula for a permanent point is described as follows:

$$ E_{PP} = (E - E \cap E_{EP} ) $$
(A.1)

where \(E\) is the point set where the second derivative of the system with respect to time is zero. Therefore, point \(E\) satisfies

$$ \sum {{\text{J}} \cdot f_{i} (X)} = 0 $$
(A.2)

where J is the Jacobian matrix of the system and \({f}_{i}(X)\) are the state equations of the system.

The Jacobian matrix corresponding to the equilibrium point \({E}_{EP}=(u, 0, 0, 0, 0)\) of system (2.4) is

$$ {\text{J}} = \left( {\begin{array}{*{20}c} {\frac{{\partial f_{1} }}{\partial x}} & {\frac{{\partial f_{1} }}{\partial y}} & {\frac{{\partial f_{1} }}{\partial z}} & {\frac{{\partial f_{1} }}{\partial w}} & {\frac{{\partial f_{1} }}{\partial h}} \\ {\frac{{\partial f_{2} }}{\partial x}} & {\frac{{\partial f_{2} }}{\partial y}} & {\frac{{\partial f_{2} }}{\partial z}} & {\frac{{\partial f_{2} }}{\partial w}} & {\frac{{\partial f_{2} }}{\partial h}} \\ {\frac{{\partial f_{3} }}{\partial x}} & {\frac{{\partial f_{3} }}{\partial y}} & {\frac{{\partial f_{3} }}{\partial z}} & {\frac{{\partial f_{3} }}{\partial w}} & {\frac{{\partial f_{3} }}{\partial h}} \\ {\frac{{\partial f_{4} }}{\partial x}} & {\frac{{\partial f_{4} }}{\partial y}} & {\frac{{\partial f_{4} }}{\partial z}} & {\frac{{\partial f_{4} }}{\partial w}} & {\frac{{\partial f_{4} }}{\partial h}} \\ {\frac{{\partial f_{5} }}{\partial x}} & {\frac{{\partial f_{5} }}{\partial y}} & {\frac{{\partial f_{5} }}{\partial z}} & {\frac{{\partial f_{5} }}{\partial w}} & {\frac{{\partial f_{5} }}{\partial h}} \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} 0 & 1 & 0 & 0 & 0 \\ {ay({\text{sgn}}(x + 1) - {\text{sgn}}(x - 1))} & {a(|x + 1| - |x - 1|)} & 0 & { - a} & { - a} \\ 0 & 0 & 0 & 0 & b \\ 0 & c & 0 & 0 & 0 \\ 0 & d & { - d} & 0 & 0 \\ \end{array} } \right) $$
(A.3)

Based on (2.4), one obtains

$$ \left( {\begin{array}{*{20}c} 0 & 1 & 0 & 0 & 0 \\ {ay({\text{sgn}}(x + 1) - {\text{sgn}}(x - 1))} & {a(|x + 1| - |x - 1|)} & 0 & { - a} & { - a} \\ 0 & 0 & 0 & 0 & b \\ 0 & c & 0 & 0 & 0 \\ 0 & d & { - d} & 0 & 0 \\ \end{array} } \right)\left( {\begin{array}{*{20}c} y \\ {a(|x + 1| - |x - 1|)y - aw - ah} \\ {bh} \\ {cy} \\ {dy - dz} \\ \end{array} } \right) $$
$$ = \left( {\begin{array}{*{20}c} {a(|x + 1| - |x - 1|)y - aw - ah} \\ {ay^{2} ({\text{sgn}}(x + 1) - {\text{sgn}}(x - 1)) + a(|x + 1| - |x - 1|)(a(|x + 1| - |x - 1|)y - aw - ah) - acy - ady + adz} \\ {bdy - bdz} \\ {c(a(|x + 1| - |x - 1|)y - aw - ah)} \\ {d(a(|x + 1| - |x - 1|)y - aw - ah) - bdh} \\ \end{array} } \right) $$
(A.4)

Obviously, when \(y\) is 0, one of the solutions can be obtained as \({E}_{1}=(u, 0, 0, 0, 0)\) from (A.4). However, when \(y\) is not 0, the situation becomes complication and needs to be classified and discussed.

It follows from (A.4) that

$$ y({\text{sgn}}(x + 1) - {\text{sgn}}(x - 1)) - c = 0 $$
(A.5)

The classification of \(x\) is given as follows:

$$ \left\{ \begin{gathered} (1)x > 1,\;\;\;{\text{Equation(A}}{\text{.5) has no solution}} \hfill \\ (2)x = 1,y = c \hfill \\ (3) - 1 < x < 1,y = \frac{c}{2} \hfill \\ (4)x = - 1,y = c \hfill \\ (5)x < - 1,{\text{Equation(A}}{\text{.5) has no solution}} \hfill \\ \end{gathered} \right. $$
(A.6)

Other equilibrium points are.

\(E_{2} = (1,c,c,0,2c),E_{3} = ( - 1,c,c,0, - 2c),E_{4} = (x_{0} ,\frac{c}{2},\frac{c}{2},0,c)( - 1 < x_{0} < 1)\).

According to (A.1), the permanent points exist in the system. In other words, \({E}_{PP}\ne \varnothing \). If the permanent point theory [45] is used to judge whether the system is conservative, it will lead to a wrong conclusion. In fact, the results of numerical simulation show that the system is conservative with some specific parameter values and initial conditions. This reveals some limitation of the permanent point theory.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wang, M., Chang, H. et al. A hyperchaotic memristive system with extreme multistability and conservativeness. Nonlinear Dyn 112, 3851–3868 (2024). https://doi.org/10.1007/s11071-023-09262-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09262-4

Keywords

Navigation