Skip to main content
Log in

CQND-WHO: chaotic quantum nonlinear differential wild horse optimizer

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Wild horse optimizer (WHO) features a simple structure with few parameters, facilitating fast convergence. However, it suffers from low global search efficiency and struggles to escape local optima during late-stage re-evolution. To address WHO’s underutilization of individuals within the population, a quantum-accelerated search algorithm was developed to enhance individual search capabilities. Moreover, a global perturbation strategy based on chaotic mapping was introduced to overcome the challenge of escaping local optima. To improve the algorithm's search efficiency, an adaptive evolution strategy was formulated. Finally, introduce the novel hybrid optimization algorithm, named chaotic quantum nonlinear differential wild horse optimizer (CQND-WHO). In this study, we tested CQND-WHO using 23 classical test suites, the CEC2014 and CEC2017 benchmarks. The results demonstrate that the improved strategy effectively addresses WHO's shortcomings. Furthermore, when compared to other optimization algorithms considered in this study, CQND-WHO exhibits significantly enhanced convergence accuracy and efficiency in solving high-dimensional complex multi-peak problems, offering a novel approach to addressing multidimensional complex multi-peak problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4
Fig. 3
Algorithm 5
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Kim, B.M., Yoo, S.J.: Decentralized event-triggered adaptive control for interconnected nonlinear dynamics of constrained air supply and thermal management systems of PEMFCs. Nonlinear Dyn. 103, 791–808 (2021). https://doi.org/10.1007/s11071-020-06124-1

    Article  Google Scholar 

  2. Bozorgmehri, B., Yu, X., Matikainen, M.K., Harish, A.B., Mikkola, A.: A study of contact methods in the application of large deformation dynamics in self-contact beam. Nonlinear Dyn. 103, 581–616 (2021). https://doi.org/10.1007/s11071-020-05984-x

    Article  Google Scholar 

  3. Taswell, C.J.: Limiting dilution assays for the determination of immunocompetent cell frequencies. I. Data analysis. J. Immunol. 126(4), 1614–1619 (1981). https://doi.org/10.4049/jimmunol.126.4.1614

    Article  CAS  PubMed  Google Scholar 

  4. Cartis, C., Gould, N.I.M., Toint, Ph.L.: On the complexity of steepest descent, Newton’s and regularized Newton’s methods for nonconvex unconstrained optimization problems. SIAM J. Optim. 20, 2833–2852 (2010). https://doi.org/10.1137/090774100

    Article  MathSciNet  Google Scholar 

  5. Lobontiu, N., Garcia, E.: Analytical model of displacement amplification and stiffness optimization for a class of flexure-based compliant mechanisms. Comput. Struct. 81, 2797–2810 (2003)

    Article  Google Scholar 

  6. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014). https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  7. Arora, S., Singh, S.: Butterfly optimization algorithm: a novel approach for global optimization. Soft. Comput. 23, 715–734 (2019). https://doi.org/10.1007/s00500-018-3102-4

    Article  Google Scholar 

  8. Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H., Mirjalili, S.M.: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017). https://doi.org/10.1016/j.advengsoft.2017.07.002

    Article  Google Scholar 

  9. Dhiman, G., Kumar, V.: Seagull, optimization, algorithm: Theory and its applications for large-scale industrial engineering problems. Knowl.-Based Syst. 165, 169–196 (2019). https://doi.org/10.1016/j.knosys.2018.11.024

    Article  Google Scholar 

  10. Kaur, S., Awasthi, L.K., Sangal, A.L., Dhiman, G.: Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 90, 103541 (2020). https://doi.org/10.1016/j.engappai.2020.103541

    Article  Google Scholar 

  11. Khishe, M., Mosavi, M.R.: Chimp optimization algorithm. Expert Syst. Appl. 149, 113338 (2020). https://doi.org/10.1016/j.eswa.2020.113338

    Article  Google Scholar 

  12. Li, L., Sun, L., Xue, Y., Li, S., Huang, X., Mansour, R.F.: Fuzzy multilevel image thresholding based on improved coyote optimization algorithm. IEEE Access 9, 33595–33607 (2021). https://doi.org/10.1109/ACCESS.2021.3060749

    Article  Google Scholar 

  13. Nayak, S.K., Padhy, S.K., Panigrahi, S.P.: A novel algorithm for dynamic task scheduling. Futur. Gener. Comput. Syst. 28, 709–717 (2012). https://doi.org/10.1016/j.future.2011.12.001

    Article  Google Scholar 

  14. Liu, A., Jiang, J.: Solving path planning problem based on logistic beetle algorithm search–pigeon-inspired optimization algorithm. Electron. Lett. 56, 1105–1108 (2020). https://doi.org/10.1049/el.2020.1895

    Article  ADS  Google Scholar 

  15. Wu, G., Mallipeddi, R., Suganthan, P.N.: Ensemble strategies for population-based optimization algorithms—A survey. Swarm Evol. Comput. 44, 695–711 (2018). https://doi.org/10.1016/j.swevo.2018.08.015

    Article  Google Scholar 

  16. Naruei, I., Keynia, F.: Wild horse optimizer: a new meta-heuristic algorithm for solving engineering optimization problems. Eng. Comput. 38, 3025–3056 (2022). https://doi.org/10.1007/s00366-021-01438-z

    Article  Google Scholar 

  17. Zeng, C., Qin, T., Tan, W., Lin, C., Zhu, Z., Yang, J., Yuan, S.: Coverage optimization of heterogeneous wireless sensor network based on improved wild horse optimizer. Biomimetics 8, 70 (2023). https://doi.org/10.3390/biomimetics8010070

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jia, X., Zhou, X., Bao, J., Zhai, G., Yan, R.: Fusion swarm-intelligence-based decision optimization for energy-efficient train-stopping schemes. Appl. Sci. 13(3), 1497 (2023). https://doi.org/10.3390/app13031497

    Article  CAS  Google Scholar 

  19. Kumar, A., Dhaliwal, B.S., Singh, D.: CL-HPWSR: Cross-layer-based energy efficient cluster head selection using hybrid particle swarm wild horse optimizer and stable routing in IoT-enabled smart farming applications. Trans. Emerg. Telecommun. Technol. 34(3), e4725 (2023). https://doi.org/10.1002/ett.4725

    Article  Google Scholar 

  20. Ali, M.H., Kamel, S., Hassan, M.H., Tostado-Véliz, M., Zawbaa, H.M.: An improved wild horse optimization algorithm for reliability based optimal DG planning of radial distribution networks. Energy Rep. 8, 582–604 (2022). https://doi.org/10.1016/j.egyr.2021.12.023

    Article  Google Scholar 

  21. Li, Y., Yuan, Q., Han, M., Cui, R.: Hybrid multi-strategy improved wild horse optimizer. Adv. Intell. Syst. 4(10), 2200097 (2022). https://doi.org/10.1002/aisy.202200097

    Article  Google Scholar 

  22. Zheng, R., Hussien, A.G., Jia, H.-M., Abualigah, L., Wang, S., Wu, D.: An improved wild horse optimizer for solving optimization problems. Mathematics 10, 1311 (2022). https://doi.org/10.3390/math10081311

    Article  Google Scholar 

  23. Li, M.W., Geng, J., Hong, W.C., Zhang, L.D.: Periodogram estimation based on LSSVR-CCPSO compensation for forecasting ship motion. Nonlinear Dyn. 97, 2579–2594 (2019). https://doi.org/10.1007/s11071-019-05149-5

    Article  Google Scholar 

  24. Li, M.W., Hong, W.C., Geng, J., Wang, J.: Berth and quay crane coordinated scheduling using multi-objective chaos cloud particle swarm optimization algorithm. Neural Comput. Appl. 28, 3163–3182 (2017). https://doi.org/10.1007/s00521-016-2226-7

    Article  Google Scholar 

  25. Li, M.W., Wang, Y.T., Geng, J., Hong, W.C.: Chaos cloud quantum bat hybrid optimization algorithm. Nonlinear Dyn. 103, 1167–1193 (2021). https://doi.org/10.1007/s11071-020-06111-6

    Article  Google Scholar 

  26. Sun, J., Xu, W., Feng, B.: A global search strategy of quantum-behaved particle swarm optimization. Proc. IEEE Conf. Cybern. Intell. Syst. 2004, 111–116 (2004). https://doi.org/10.1109/ICCIS.2004.1460396

    Article  Google Scholar 

  27. Poláková, R.: (2017). Controlling population size in differential evolution by diversity mechanism. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing (ICAISC 2017), 10245. pp 408–417 (2017). https://doi.org/10.1007/978-3-319-59063-9_36

  28. Golberg, D.E.: Genetic algorithms in search, optimization, and machine learning. Addison-Wesley Professional, Boston, Massachusetts (1989)

    Google Scholar 

  29. Liang, J. J., Qu, B. Y., Suganthan, P. N.: Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization. Tech. Rep. 201311. 635(2), 1–13 (2013).

  30. Wu, G., Mallipeddi, R., Suganthan, P. N.: Problem definitions and evaluation criteria for the CEC 2017 competition on constrained real-parameter optimization. Tech. Rep., (2017).

  31. Robinson, J., Rahmat-Samii, Y.: Particle swarm optimization in electromagnetics. IEEE Trans. Antennas Propag. 52(2), 397–407 (2004). https://doi.org/10.1109/TAP.2004.823969

    Article  ADS  MathSciNet  Google Scholar 

  32. Mirjalili, S.: SCA: A sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 96, 120–133 (2016). https://doi.org/10.1016/j.knosys.2015.12.022

    Article  Google Scholar 

  33. Faramarzi, A., Heidarinejad, M., Stephens, B., Mirjalili, S.: Equilibrium optimizer: A novel optimization algorithm. Knowl.-Based Syst. 191, 105190 (2020). https://doi.org/10.1016/j.knosys.2019.105190

    Article  Google Scholar 

  34. Ma, J., Hao, Z., Sun, W.: Enhancing sparrow search algorithm via multi-strategies for continuous optimization problems. Inf. Proc. Manag. 59, 102854 (2022). https://doi.org/10.1016/j.ipm.2021.102854

    Article  Google Scholar 

  35. Zhang, J., Cheng, X., Zhao, M., Li, J.: ISSWOA: hybrid algorithm for function optimization and engineering problems. J. Supercomput. 79, 8789–8842 (2023). https://doi.org/10.1007/s11227-022-04996-1

    Article  Google Scholar 

  36. Wang, S., Jia, H., Abualigah, L., Liu, Q., Zheng, R.: An improved hybrid Aquila optimizer and Harris Hawks algorithm for solving industrial engineering optimization problems. Processes 9(9), 1551 (2021). https://doi.org/10.3390/pr9091551

    Article  CAS  Google Scholar 

  37. Yu, F., Xu, X.: A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network. Appl. Energy 134, 102–113 (2014). https://doi.org/10.1016/j.apenergy.2014.07.104

    Article  ADS  Google Scholar 

  38. Li, C., Xie, T., Liu, Q., Geng, G.: Cryptanalyzing image encryption using chaotic logistic map. Nonlinear Dyn. 78, 1545–1551 (2014). https://doi.org/10.1007/s11071-014-1533-8

    Article  Google Scholar 

  39. Shi, R., Song, Z., Feng, T., Wang, G., Wang, X.: Analytical soliton solutions of the (2+1)-dimensional sine-Gordon equation. Nonlinear Dyn. 88, 255–262 (2017). https://doi.org/10.1007/s11071-016-3241-z

    Article  MathSciNet  Google Scholar 

  40. Liu, L., Liu, C., Zhang, Y.: Theoretical analysis and circuit implementation of a novel complicated hyperchaotic system. Nonlinear Dyn. 66, 707–715 (2011). https://doi.org/10.1007/s11071-011-9943-3

    Article  MathSciNet  Google Scholar 

  41. Huang, X.: Image encryption algorithm using chaotic Chebyshev generator. Nonlinear Dyn. 67, 2411–2417 (2012). https://doi.org/10.1007/s11071-011-0155-7

    Article  MathSciNet  Google Scholar 

  42. Cid-Montiel, L., Llibre, J., Stoica, C.: Zero-Hopf bifurcation in a hyperchaotic Lorenz system. Nonlinear Dyn. 75, 561–566 (2014). https://doi.org/10.1007/s11071-013-1085-3

    Article  MathSciNet  Google Scholar 

  43. Chang, C.M., Chen, H.K.: Chaos and hybrid projective synchronization of commensurate and incommensurate fractional-order Chen-Lee systems. Nonlinear Dyn. 62, 851–858 (2010). https://doi.org/10.1007/s11071-010-9767-6

    Article  MathSciNet  Google Scholar 

  44. Yang, C.C.: Adaptive synchronization of Lü hyperchaotic system with uncertain parameters based on single-input controller. Nonlinear Dyn. 63, 447–454 (2011). https://doi.org/10.1007/s11071-010-9814-3

    Article  MathSciNet  Google Scholar 

  45. Xu, C., Zhang, Q.: On the chaos control of the Qi system. J. Eng. Math. 90, 67–81 (2015). https://doi.org/10.1007/s10665-014-9730-5

    Article  MathSciNet  Google Scholar 

  46. Si, Y., Liu, H., Chen, Y.: Constructing a 3D exponential hyperchaotic map with application to PRNG. Int. J. Bifurc. Chaos 32, 2250095 (2022). https://doi.org/10.1142/S021812742250095X

    Article  MathSciNet  Google Scholar 

  47. Frans, V.D.B., Andries Petrus, E.: A convergence proof for the particle swarm optimiser. Fundamenta Informaticae 105, 341–374 (2010). https://doi.org/10.3233/FI-2010-370

  48. Halimu, Y., Zhou, C., You, Q., Jun, Sun.: A quantum-behaved particle swarm optimization algorithm on riemannian manifolds. Mathematics 10(22), 4168 (2022). https://doi.org/10.3390/math10224168

  49. Li, X., Fang, W., Zhu, S.: An improved binary quantum-behaved particle swarm optimization algorithm for knapsack problems. Inf. Sci. 648, 119529 (2023). https://doi.org/10.1016/j.ins.2023.119529

    Article  Google Scholar 

  50. Cao, B., Fan, S., Zhao, J., Yang, P., Muhammad, K., Tanveer, M.: Quantum-enhanced multiobjective large-scale optimization via parallelism. Swarm Evol. Comput. 57, 100697 (2020). https://doi.org/10.1016/j.swevo.2020.100697

    Article  Google Scholar 

  51. Das, S., Suganthan, P.N.: Differential evolution: A survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2010). https://doi.org/10.1109/TEVC.2010.2059031

    Article  Google Scholar 

  52. Liang, Z., Dong, H., Liu, C., Liang, W., Zhu, Z.: Evolutionary multitasking for multiobjective optimization with subspace alignment and adaptive differential evolution. IEEE Trans. Cybern. 52(4), 2096–2109 (2022). https://doi.org/10.1109/TCYB.2020.2980888

    Article  PubMed  Google Scholar 

  53. Deng, W., Xu, J., Gao, X., Zhao, H.: An enhanced MSIQDE algorithm with novel multiple strategies for global optimization problems. IEEE Trans. Syst., Man, Cybern.: Syst. 52(3), 1578–1587 (2020). https://doi.org/10.1109/TSMC.2020.3030792

    Article  Google Scholar 

Download references

Funding

The work is supported by the following project grants, Heilongjiang Excellent Youth Fund Project (YQ2021E015); Natural Science Foundation of Heilongjiang Province of China (ZD2022E002); Hainan Province’s Key Research and Development Project (ZDYF2023GXJS017); National Natural Science Foundation of China (No.51509056); National Science and Technology Council, Taiwan (MOST 111-2410-H161-001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Chiang Hong.

Ethics declarations

Conflict of interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, MW., Wang, YT., Yang, ZY. et al. CQND-WHO: chaotic quantum nonlinear differential wild horse optimizer. Nonlinear Dyn 112, 4899–4927 (2024). https://doi.org/10.1007/s11071-023-09246-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09246-4

Keywords

Navigation