Skip to main content
Log in

Refined composite variable-step multiscale multimapping dispersion entropy: a nonlinear dynamical index

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Nonlinear dynamical index can measure the complexity for a single time scale of the series, and when combined with coarse-grained methods, multiple time scales can be obtained to extract more information. In this study, a new coarse-grained method called refined composite variable-step multiscale (RCVM) is proposed, which obtains more subseries by setting different initial points and step lengths and thus extracts more potential information; moreover, in order to get a nonlinear dynamical index value with stronger stability, this study proposes the multimapping dispersion entropy (MDE) by averaging multiple classes of effective mapping approaches on the basis of dispersion entropy; by combining MDE and RCVM processing, RCVM-MDE is proposed to be used as a new nonlinear dynamical index, which can reflect the complexity of the series at multiple scales. The results of the four classes of chaotic simulated signals show that RCVM-MDE is not only able to detect the series nonlinear dynamic changes, but also has a very high stability; the results of three classes of real-world signals demonstrate the differentiability of RCVM-MDE compared to other commonly used entropies, as well as the best classification effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

DE:

Dispersion entropy

MDE:

Multimapping dispersion entropy

RCM:

Refined composite multiscale

VM:

Variable-step multiscale

RCVM:

Refined composite variable-step multiscale

RCVM-MDE:

Refined composite variable-step multiscale multimapping dispersion entropy

M-MDE:

Multiscale multimapping dispersion entropy

M-DE:

Multiscale dispersion entropy

RCM-DE:

Refined composite multiscale dispersion entropy

M-FRDE:

Multiscale fluctuation-based reverse dispersion entropy

LM:

Linear mapping

TANSIG:

Tangent sigmoid

LOGSIG:

Logarithm sigmoid

NCDF:

Normal cumulative distribution function

SORT:

Sorting method

WGN:

White Gaussian noise

PN:

Pink noise

References

  1. Tenreiro, M., Lopes, A.: Entropy analysis of human death uncertainty. Nonlinear Dyn. 104, 3897–3911 (2021)

    Article  Google Scholar 

  2. Yeh, C., Shi, W.: Generalized multiscale Lempel-Ziv complexity of cyclic alternating pattern during sleep. Nonlinear Dyn. 93, 1899–1910 (2018)

    Article  Google Scholar 

  3. Babloyantz, A., Destexhe, A.: Is the normal heart a periodic oscillator? Biol. Cybern. 58, 203–211 (1988)

    Article  MathSciNet  Google Scholar 

  4. Grassberger, P., Procaccia, I.: Characterization of strange attractors. Phys. Rev. Lett. 50, 346 (1983)

    Article  MathSciNet  Google Scholar 

  5. Gao, Z., Dang, W., Wang, X.: Complex networks and deep learning for EEG signal analysis. Cogn. Neurodyn. 15, 369–388 (2021)

    Article  Google Scholar 

  6. Lin, H., Scs, Y.: Analysis of a nonlinear system exhibiting chaotic, noisy chaotic, and random behaviors. J. Appl. Mech. 63(2), 509–516 (1996)

    Article  MathSciNet  Google Scholar 

  7. Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 623–656 (1948)

    Article  MathSciNet  Google Scholar 

  8. Li, Y., Tang, B., Jiao, S., Su, Q.: Snake optimization-based variable-step multiscale single threshold slope entropy for complexity analysis of signals. IEEE Trans. Instrum. Meas. 72, 6505313 (2023)

    Google Scholar 

  9. Zhang, X., Wang, H., Ren, M., He, M., Jin, L.: Rolling bearing fault diagnosis based on multiscale permutation entropy and SOA-SVM. Machines 10(6), 485 (2022)

    Article  Google Scholar 

  10. Ying, W., Tong, J., Dong, Z., Pan, H., Liu, Q., Zheng, J.: Composite multivariate multi-scale permutation entropy and laplacian score based fault diagnosis of rolling bearing. Entropy 24(2), 160 (2022)

    Article  Google Scholar 

  11. Rostaghi, M., Azami, H.: Dispersion entropy: a measure for time-series analysis. IEEE Signal Process. Lett. 23(5), 610–614 (2016)

    Article  Google Scholar 

  12. Bandt, C., PoMFRDE, B.: Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88(17), 174102 (2002)

    Article  Google Scholar 

  13. Li, Y., Gao, X., Wang, L.: Reverse dispersion entropy: a new complexity measure for sensor signal. Sensors 19(23), 5203 (2019)

    Article  Google Scholar 

  14. Zheng, J., Pan, H.: Use of generalized refined composite multiscale fractional dispersion entropy to diagnose the faults of rolling bearing. Nonlinear Dyn. 101, 1417–1440 (2021)

    Article  Google Scholar 

  15. Escudero, J.: Amplitude- and fluctuation-based dispersion entropy. Entropy 20(3), 210 (2018)

    Article  Google Scholar 

  16. Li, Y., Geng, B., Tang, B.: Simplified coded dispersion entropy: a nonlinear metric for signal analysis. Nonlinear Dyn. 111, 9327–9344 (2023)

    Article  Google Scholar 

  17. Mao, X., Shang, P., Xu, M.: Measuring time series based on multiscale dispersion Lempel-Ziv complexity and dispersion entropy plane. Chaos Solitons Fractals 137, 109868 (2020)

    Article  MathSciNet  Google Scholar 

  18. Azami, H., Sanei, S., Rajji, T.: Ensemble entropy: a low bias approach for data analysis. Knowl.-Based Syst. 256, 109876 (2022)

    Article  Google Scholar 

  19. Li, Y., Tang, B., Geng, B., Jiao, S.: Fractional order fuzzy dispersion entropy and its application in bearing fault diagnosis. Fractal and Fractional 6(10), 544 (2022)

    Article  Google Scholar 

  20. Azami, H., Fernandez, A., Escudero, J.: Multivariate multiscale dispersion entropy of biomedical times series. Entropy 21(9), 913 (2017)

    Article  MathSciNet  Google Scholar 

  21. Li, Y., Liu, F., Wang, S.: Multi-scale symbolic Lempel-Ziv: an effective feature extraction approach for fault diagnosis of railway vehicle systems. IEEE Trans. Industr. Inf. 17(1), 199–208 (2021)

    Article  Google Scholar 

  22. Azami, H., Rostaghi, M., Abásolo, D., Escudero, J.: Refined composite multiscale dispersion entropy and its application to biomedical signals. IEEE Trans. Biomed. Eng. 64(12), 2872–2879 (2017)

    Article  Google Scholar 

  23. Costa, M., Goldberger, A., Peng, C.: Multiscale entropy analysis of biological signals. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(2), 021906 (2005)

    Article  MathSciNet  Google Scholar 

  24. Wu, S.-D., Wu, C.-W., Lin, S.-G.: Analysis of complex time series using refined composite multiscale entropy - ScienceDirect. Phys. Lett. A 378(20), 1369–1374 (2014)

    Article  Google Scholar 

  25. Su, Z., Shi, J., Luo, Y.: Fault severity assessment for rotating machinery via improved Lempel-Ziv complexity based on variable-step multiscale analysis and equiprobable space partitioning. Meas. Sci. Technol. 33(5), 055018 (2022)

    Article  Google Scholar 

  26. Shi, J., Su, Z., Qin, H., Shen, C.: Generalized variable-step multiscale Lempel-Ziv complexity: a feature extraction tool for bearing fault diagnosis. IEEE Sens. J. 22(15), 15296–15305 (2022)

    Article  Google Scholar 

  27. Wu, G., Baleanu, D.: Chaos synchronization of the discrete fractional logistic map. Signal Process. 102(9), 96–99 (2014)

    Article  Google Scholar 

  28. Li, Y., Tang, B., Jiao, S.: SO-slope entropy coupled with SVMD: a novel adaptive feature extraction method for ship-radiated noise. Ocean Eng. 280, 114677 (2023)

    Article  Google Scholar 

  29. Chen, F., Baleanu, D.: Chaos synchronization of fractional chaotic maps based on the stability condition. Phys. A Stat. Mech. Appl. 460, 374–383 (2016)

    Article  MathSciNet  Google Scholar 

  30. Azami, H., Escudero, J.: Improved multiscale permutation entropy for biomedical signal analysis: Interpretation and application to electroencephalogram recordings. Biomed. Signal Process. Control 23, 28–41 (2016)

    Article  Google Scholar 

  31. Rostaghi, M., Khatibi, M., Ashory, M., Azami, H.: Fuzzy dispersion entropy: a nonlinear measure for signal analysis. IEEE Trans. Fuzzy Syst. 30(9), 3785–3796 (2022)

    Article  Google Scholar 

  32. Li, Y., Geng, B., Jiao, S.: Dispersion entropy-based Lempel-Ziv complexity: a new metric for signal analysis. Chaos Solitons Fractals 161, 112400 (2022)

    Article  MathSciNet  Google Scholar 

  33. Shao, S., Mcaleer, S., Yan, R.: Highly accurate machine fault diagnosis using deep transfer learning. IEEE Trans. Industr. Inf. 15(4), 2446–2455 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61871318), Key Research and Development Projects of Shaanxi Province (No. 2022JBGS3-01), and the Natural Science Foundation of Shaanxi Province (No. 2022JM-337).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxing Li.

Ethics declarations

Conflict of interest

The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Jiao, S., Deng, S. et al. Refined composite variable-step multiscale multimapping dispersion entropy: a nonlinear dynamical index. Nonlinear Dyn 112, 2119–2137 (2024). https://doi.org/10.1007/s11071-023-09145-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09145-8

Keywords

Navigation