Skip to main content
Log in

Adaptive control of n-link hydraulic manipulators with gravity and friction identification

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Many industrial applications of hydraulic manipulators, such as settling in positioning, tracking control, and programming by demonstration, require precise compensation of the gravity and friction effects. In comparison with complete dynamic model identification, gravity and friction identification are more accessible in practical applications since they requires less measurement information and computation resources. However, for the multi-link serial hydraulic manipulator, there is still a lack of a theoretical and systematic approach for gravity and friction identification, which makes it challenging to achieve precise motion control in practice. To address this problem, this article first establishes a continuously differentiable nonlinear friction model that can capture complex friction behaviors and is more suitable for recursive backstepping design implementation. Then, based on the modified Denavit–Hartenberg model, a general gravity model of an \(\varvec{n}\)-link hydraulic manipulator is established, which is not only applicable for the robotic manipulator with revolute or prismatic joints but also suitable for any installation forms, such as robotic manipulators installed on a vertical wall, a horizontal ground, a slope, etc. Moreover, a theoretical and systematic method is provided for gravity and friction identification. Eventually, an adaptive backstepping controller is integrated with gravity and friction identification to reduce the negative effect of identification errors and unmodeled dynamics on tracking performance. The effectiveness of the developed approach is substantiated on a six-degree-of-freedom hydraulic manipulator experimental platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data will be available on reasonable request.

References

  1. Phan, V.D., Ahn, K.K.: Fault-tolerant control for an electro-hydraulic servo system with sensor fault compensation and disturbance rejection. Nonlinear Dyn. 111(11), 10131–10146 (2023)

    Article  Google Scholar 

  2. Mattila, J., Koivumäki, J., Caldwell, D.G., Semini, C.: A survey on control of hydraulic robotic manipulators with projection to future trends. IEEE/ASME Trans. Mechatron. 22(2), 669–680 (2017)

    Article  Google Scholar 

  3. Yang, X., Deng, W., Yao, J.: Neural adaptive dynamic surface asymptotic tracking control of hydraulic manipulators with guaranteed transient performance. IEEE Trans. Neural Netw. Learn. Syst. (2022). https://doi.org/10.1109/TNNLS.2022.3141463

    Article  Google Scholar 

  4. Deng, W., Zhou, H., Zhou, J., Yao, J.: Neural network-based adaptive asymptotic prescribed performance tracking control of hydraulic manipulators. IEEE Trans. Syst. Man Cybern. Syst. 53(1), 285–295 (2022)

    Article  Google Scholar 

  5. Sun, Y., Wan, Y., Ma, H., Liang, X.: Compensation control of hydraulic manipulator under pressure shock disturbance. Nonlinear Dyn. 111, 1–17 (2023)

    Article  Google Scholar 

  6. An, C.H., Atkeson, C.G., Hollerbach, J.M.: Model-Based Control of a Robot Manipulator. MIT Press, Cambridge (1988)

    Google Scholar 

  7. Babarahmati, K.K., Tiseo, C., Smith, J., Lin, H.-C., Erden, M.S., Mistry, M.: Fractal impedance for passive controllers: a framework for interaction robotics. Nonlinear Dyn. 110(3), 2517–2533 (2022)

    Article  Google Scholar 

  8. Luo, S., Cheng, M., Ding, R., Wang, F., Xu, B., Chen, B.: Human–robot shared control based on locally weighted intent prediction for a teleoperated hydraulic manipulator system. IEEE/ASME Trans. Mechatron. 27(6), 4462–4474 (2022)

    Article  Google Scholar 

  9. Wan, H., Chen, S., Zhang, C., Chen, C.-Y., Yang, G.: Compliant control of flexible joint by dual-disturbance observer and predictive feedforward. IEEE/ASME Trans. Mechatron. 28, 1890–1899 (2023)

    Article  Google Scholar 

  10. Chen, S., Luo, M., Jiang, G., Abdelaziz, O.: Collaborative robot zero moment control for direct teaching based on self-measured gravity and friction. Int. J. Adv. Rob. Syst. 15(6), 1–11 (2018)

    Google Scholar 

  11. Martinez, S., Garcia-Haro, J.M., Victores, J.G., Jardon, A., Balaguer, C.: Experimental robot model adjustments based on force-torque sensor information. Sensors 18(3), 836 (2018)

    Article  Google Scholar 

  12. Wu, J., Wang, J., You, Z.: An overview of dynamic parameter identification of robots. Robot. Comput. Integr. Manuf. 26(5), 414–419 (2010)

    Article  Google Scholar 

  13. Calanca, A., Capisani, L.M., Ferrara, A., Magnani, L.: Mimo closed loop identification of an industrial robot. IEEE Trans. Control Syst. Technol. 19(5), 1214–1224 (2010)

    Article  Google Scholar 

  14. Xu, T., Fan, J., Fang, Q., Zhu, Y., Zhao, J.: Robot dynamic calibration on current level: modeling, identification and applications. Nonlinear Dyn. 109(4), 2595–2613 (2022)

    Article  Google Scholar 

  15. Gautier, M., Khalil, W.: Direct calculation of minimum set of inertial parameters of serial robots. IEEE Trans. Robot. Autom. 6(3), 368–373 (1990)

    Article  Google Scholar 

  16. Sousa, C.D., Cortesao, R.: Physical feasibility of robot base inertial parameter identification: a linear matrix inequality approach. Int. J. Robot. Res. 33(6), 931–944 (2014)

    Article  Google Scholar 

  17. Swevers, J., Ganseman, C., Tukel, D.B., De Schutter, J., Van Brussel, H.: Optimal robot excitation and identification. IEEE Trans. Robot. Autom. 13(5), 730–740 (1997)

    Article  Google Scholar 

  18. Jin, J., Gans, N.: Parameter identification for industrial robots with a fast and robust trajectory design approach. Robot. Comput. Integrat. Manuf. 31, 21–29 (2015)

    Article  Google Scholar 

  19. Guo, Q., Chen, Z., Shi, Y., Liu, G.: Model identification and parametric adaptive control of hydraulic manipulator with neighborhood field optimization. IET Control Theory Appl. 15(12), 1599–1614 (2021)

    Article  MathSciNet  Google Scholar 

  20. Ma, D., Hollerbach, J.M.: Identifying mass parameters for gravity compensation and automatic torque sensor calibration. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 1. IEEE, pp. 661–666 (1996)

  21. Moubarak, S., Pham, M.T., Moreau, R., Redarce, T.: Gravity compensation of an upper extremity exoskeleton. In: Annual International Conference of the IEEE Engineering in Medicine and Biology. IEEE 2010, pp. 4489–4493 (2010)

  22. Palpacelli, M., Palmieri, G., Carbonari, L., Callegari, M.: Experimental identification of the static model of the HPKM Tricept industrial robot. Adv. Robot. 28(19), 1291–1304 (2014)

    Article  Google Scholar 

  23. Han, Y., Wu, J., Liu, C., Xiong, Z.: Static model analysis and identification for serial articulated manipulators. Robot. Comput. Integr. Manuf. 57, 155–165 (2019)

    Article  Google Scholar 

  24. Swevers, J., Verdonck, W., De Schutter, J.: Dynamic model identification for industrial robots. IEEE Control Syst. Mag. 27(5), 58–71 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chen, Z., Guo, Q., Yan, Y., Shi, Y.: Model identification and adaptive control of lower limb exoskeleton based on neighborhood field optimization. Mechatronics 81, 102699 (2022)

    Article  Google Scholar 

  26. Mohanty, A., Yao, B.: Indirect adaptive robust control of hydraulic manipulators with accurate parameter estimates. IEEE Trans. Control Syst. Technol. 19(3), 567–575 (2010)

    Article  Google Scholar 

  27. Guo, Q., Zhang, Y., Celler, B.G., Su, S.W.: Neural adaptive backstepping control of a robotic manipulator with prescribed performance constraint. IEEE Trans. Neural Netw. Learn. Syst. 30(12), 3572–3583 (2018)

    Article  MathSciNet  Google Scholar 

  28. Wang, Y., Luo, G., Gu, L., Li, X.: Fractional-order nonsingular terminal sliding mode control of hydraulic manipulators using time delay estimation. J. Vib. Control 22(19), 3998–4011 (2016)

    Article  Google Scholar 

  29. Wang, X., Sun, X., Li, S., Ye, H.: Finite-time position tracking control of rigid hydraulic manipulators based on high-order terminal sliding mode. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 226(3), 394–415 (2012)

    Google Scholar 

  30. Dinh, T.X., Thien, T.D., Anh, T.H.V., Ahn, K.K.: Disturbance observer based finite time trajectory tracking control for a 3 DoF hydraulic manipulator including actuator dynamics. IEEE Access 6, 36798–36809 (2018)

    Article  Google Scholar 

  31. Koivumäki, J., Mattila, J.: Stability-guaranteed force-sensorless contact force/motion control of heavy-duty hydraulic manipulators. IEEE Trans. Rob. 31(4), 918–935 (2015)

    Article  Google Scholar 

  32. Dao, H.V., Ahn, K.K.: Extended sliding mode observer-based admittance control for hydraulic robots. IEEE Robot. Autom. Lett. 7(2), 3992–3999 (2022)

    Article  Google Scholar 

  33. Won, D., Kim, W., Tomizuka, M.: Nonlinear control with high-gain extended state observer for position tracking of electro-hydraulic systems. IEEE/ASME Trans. Mechatron. 25(6), 2610–2621 (2020)

    Article  Google Scholar 

  34. Deng, W., Yao, J.: Asymptotic tracking control of mechanical servosystems with mismatched uncertainties. IEEE/ASME Trans. Mechatron. 26(4), 2204–2214 (2020)

    Article  Google Scholar 

  35. Yao, J., Jiao, Z., Ma, D.: Rise-based precision motion control of dc motors with continuous friction compensation. IEEE Trans. Ind. Electron. 61(12), 7067–7075 (2014)

    Article  Google Scholar 

  36. Thenozhi, S., Sánchez, A.C., Rodríguez-Reséndiz, J.: A contraction theory-based tracking control design with friction identification and compensation. IEEE Trans. Ind. Electron. 69(6), 6111–6120 (2021)

    Article  Google Scholar 

  37. Corke, P.I.: A simple and systematic approach to assigning Denavit–Hartenberg parameters. IEEE Trans. Rob. 23(3), 590–594 (2007)

    Article  Google Scholar 

  38. Niku, S.B.: Introduction to Robotics: Analysis, Control, Applications. Wiley, Hoboken (2020)

    Google Scholar 

  39. Yao, J., Deng, W.: Active disturbance rejection adaptive control of hydraulic servo systems. IEEE Trans. Ind. Electron. 64(10), 8023–8032 (2017)

    Article  Google Scholar 

Download references

Funding

This work was supported in part by the National Key R &D Program of China under Grant 2021YFB2011300, in part by the National Natural Science Foundation of China under Grant 52075262 and Grant 52275062.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianyong Yao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, X., Yao, Z., Deng, W. et al. Adaptive control of n-link hydraulic manipulators with gravity and friction identification. Nonlinear Dyn 111, 19093–19109 (2023). https://doi.org/10.1007/s11071-023-08850-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08850-8

Keywords

Navigation