Skip to main content
Log in

Nonlinear dynamics of inositol 1,4,5-trisphosphate-induced Ca\(^{2+}\) patterns in two-dimensional cell networks with paracrine signaling interaction

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Two-dimensional Ca\(^{2+}\) oscillations are investigated in a cell network in the presence of bidirectional paracrine signaling interactions. The proposed model relies on Ca\(^{2+}\)-induced Ca\(^{2+}\) release, in which Ca\(^{2+}\)-stimulated degradation of inositol 1,4,5-triphosphate (IP\(_3\)) by a3-kinase plays a significant role. Via predictions from the synchronization factor R in the parameter domain, the propagation of intercellular Ca\(^{2+}\) wave is numerically studied. Large values of external stimulus are required for weak paracrine coupling to support synchronization, while the latter takes place for strong coupling when the hormonal stimulus is weak. Moreover, the rate of linear leak of Ca\(^{2+}\) from the endoplasmic reticulum to the cytosol favors synchronous states when the paracrine coupling is weak. Considering particularly weak values of the synchronization factor, importance is given to the effect of paracrine signaling. Different scenarios are recorded, especially the appearance of spiral Ca\(^{2+}\) waves and their disintegration to turbulent patterns under strong paracrine coupling. Additionally, weak paracrine coupling gives rise to target Ca\(^{2+}\) waves. It is also reported that a suitable balance between the IP\(_3\) degradation and the cell’s degree of stimulus is necessary for the robustness of spiral waves to be effective under appropriate paracrine coupling strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The simulation data related to the current study are not publicly available due to but can be obtained from the corresponding author, CBT, on reasonable request.

References

  1. Berridge, M.J.: Inositol trisphosphate and calcium signaling mechanisms. Biochimi. Biophys. Acta 1793, 933 (2009)

    Google Scholar 

  2. Mikoshiba, K.: IP3 receptor/Ca\(^{2+}\) channel: from discovery to new signaling concepts. J. Neurochem. 102, 1426 (2007)

    Google Scholar 

  3. Berridge, M.J., Bootman, M.D., Roderick, H.L.: Calcium signaling: dynamics, homeostasis and remodelling. Nature Rev. Mol. Cell Biol. 4, 517 (2003)

    Google Scholar 

  4. Clapham, D.: Calcium signaling. Cell 131, 1047 (2007)

    Google Scholar 

  5. Cui, C., Merritt, R., Fu, L., Pan, Z.: Targeting calcium signaling in cancer therapy. Acta Pharm. Sin. B 7, 3 (2017)

    Google Scholar 

  6. Chang, Y., Funk, M., Roy, S., Stephenson, E., et al.: Developing a mathematical model of intracellular calcium dynamics for evaluating combined anticancer effects of Afatinib and RP4010 in esophageal cancer. Int. J. Mol. Sci. 23, 1763 (2022)

    Google Scholar 

  7. Falcke, M.: Reading the patterns in living cells - the physics of Ca\(^{2+}\) signaling. Adv. Phys. 53, 255 (2004)

    Google Scholar 

  8. Berridge, M.J.: Inositol trisphosphate and Ca\(^{2+}\) signalling. Nature 361, 315 (1993)

    Google Scholar 

  9. Rey, O., Young, S.H., Jacamo, R., Moyer, M.P., Rozengurt, E.: Extracellular calcium-sensing receptor stimulation in human colonic epithelial cells induces intracellular calcium oscillations and proliferation inhibition. J. Cell. Physiol. 225, 73 (2010)

    Google Scholar 

  10. Ridgway, E.B., Gilkey, J.C., Jaffe, L.F.: Free calcium increases explosively in activating medaka eggs. Adv. Physiol. 74, 623 (1977)

    Google Scholar 

  11. Lipp, P., Niggli, E.: Microscopic spiral waves reveal positive feedback in subcellular calcium signaling. Biophys. J . 65, 2272 (1993)

    Google Scholar 

  12. Sanderson, M.J., Charles, A.C., Boitano, S., Dirksen, E.R.: Mechanisms and function of intercellular calcium signaling. Mol. Cell. Endocrinol. 98, 173 (1994)

    Google Scholar 

  13. Robb-Gaspers, L.D., Thomas, A.P.: Coordination of Ca\({2+}\) signaling by intercellular propagation of Ca\(^{2+}\) waves in the intact liver. J. Biol. Chem. 270, 8102 (1995)

    Google Scholar 

  14. Thomas, A.P., Robb-Gaspers, L.D., Rooney, T.A., Hajnoczky, G., Renard- Rooney, D.C., Lin, C.: Spatial organization of oscillating calcium signals in liver. Biochem. Soc. Trans. 23, 642 (1995)

    Google Scholar 

  15. Harris-White, M.E., Zanotti, S.A., Frautschy, S.A., Charles, A.C.: Spiral intercellular calcium waves in hippocampal slice cultures. J. Neurophysiol. 79, 1045 (1998)

    Google Scholar 

  16. Putney, J., Bird, G.: The inositol phosphate-calcium signaling system in nonexcitable cells. Endocr. Rev. 14, 610 (1993)

    Google Scholar 

  17. Cornell-Bell, A.H., Finkbeiner, S.M., Cooper, M.S., Smith, S.J.: Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247, 470 (1990)

    Google Scholar 

  18. Charles, A.C., Merrill, J.E., Dirksen, E.R., Sanderson, M.J.: Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate. Neuron 6, 983 (1991)

    Google Scholar 

  19. Charles, A.: Intercellular calcium waves in glia. Glia 24, 39 (1998)

    Google Scholar 

  20. Venance, L., Piomelli, D., Glowinski, J., Giaume, C.: Inhibition by anandamide of gap junctions and intercellular calcium signalling in striatal astrocytes. Nature 376, 590 (1995)

    Google Scholar 

  21. Giaume, C., Venance, L.: Intercellular calcium signaling and gap junctional communication in astrocytes. Glia 24, 50 (1998)

    Google Scholar 

  22. Fields, R.D., Stevens-Graham, B.: Neuroscience-new insights into neuron-glia communication. Science 298, 556 (2002)

    Google Scholar 

  23. Allen, N.J., Barres, B.A.: Glia-more than just brain glue. Nature 457, 675 (2009)

    Google Scholar 

  24. Hashimura, H., Morimoto, Y.V., Hirayama, Y., Ueda, M.: Calcium responses to external mechanical stimuli in the multicellular stage of Dictyostelium discoideum. Sci. Rep. 12, 12428 (2022)

    Google Scholar 

  25. Newman, E.A.: Propagation of intercellular calcium waves in retinal astrocytes and muller cells. J. Neurosci. 21, 2215 (2001)

    Google Scholar 

  26. Newman, E.A., Zahs, K.R.: Calcium waves in retinal glial cells. Science 275, 844 (1997)

    Google Scholar 

  27. Scemes, E., Suadicani, S.O., Spray, D.C.: Intercellular communication in spinal cord astrocytes: fine-tuning between gap junctions and P2 nucleotide receptors in calcium wave propagation. J. Neurosci. 20, 1435 (2000)

    Google Scholar 

  28. Kaouri, K., K., Maini, P. K., Skourides, P. A., Christodoulou, N., Chapman, S. J.: A simple mechanochemical model for calcium signalling in embryonic epithelial cells. J. Math. Biol. 78, 2059 (2019)

  29. Katerina Kaouri, K., Méndez, P.E., Ruiz-Baier, R.: Mechanochemical models for calcium waves in embryonic epithelia. Viet. J. Math. (2022). https://doi.org/10.1007/s10013-022-00579-y

    Article  MathSciNet  MATH  Google Scholar 

  30. Dupont, G., Tordjmann, T., Clair, C., Swillens, S., Claret, M., Combettes, L.: Mechanism of receptor-oriented intercellular calcium wave propagation in hepatocytes. FASEB J. 14, 279 (2000)

    Google Scholar 

  31. Höfer, Th.: Model of intercellular calcium oscillations in hepatocytes: synchronization of heterogeneous cells. Biophys. J . 77, 1244 (1999)

    Google Scholar 

  32. Höfer, Th., Politi, A., Heinrich, R.: Intercellular Ca\(^{2+}\) wave propagation through gap-junctional Ca\(^{2+}\) diffusion: a theoretical study. Biophys. J . 80, 75 (2001)

    Google Scholar 

  33. Manhas, N., Anbazhagan, N.: A mathematical model of intricate calcium dynamics and modulation of calcium signalling by mitochondria in pancreatic acinar cells. Chaos Solit. Fract. 145, 110741 (2021)

    MathSciNet  MATH  Google Scholar 

  34. Agarwal, R., Kritika, Purohit, S. D.: Mathematical model pertaining to the effect of buffer over cytosolic calcium concentration distribution. Chaos Solit. Fract. 143, 110610 (2021)

  35. Gracheva, M.E., Toral, R., Gunton, J.D.: Stochastic effects in intercellular calcium spiking in hepatocytes. J. Theor. Biol. 212, 111 (2001)

    Google Scholar 

  36. Friedhoff, V.N., Ramlow, L., Lindner, B., Falcke, M.: Models of stochastic Ca\(^{2+}\) spiking-Established approaches and inspirations from models of neuronal spikes. Eur. Phys. J. Spec. Top. 230, 2911 (2021)

    Google Scholar 

  37. Bär, M., Falcke, M., Levine, H., Tsimring, L.S.X.: Discrete stochastic modeling of calcium channel dynamics. Phys. Rev. Lett. 84, 5664 (2000)

    Google Scholar 

  38. Falcke, M., Tsimring, L., Levine, H.: Stochastic spreading of intracellular Ca\(^{2+}\) release. Phys. Rev. E 62, 2636 (2000)

    Google Scholar 

  39. Hassinger, T.D., Guthrie, P.B., Atkinson, P.B., Bennett, M.V., Kater, S.B.: An extracellular signaling component in propagation of astrocytic calcium waves. Proc. Natl. Acad. Sci. U.S.A. 93, 13268 (1996)

    Google Scholar 

  40. Höfer, A.M., Curci, S., Doble, M.A., Brown, M.E., Soybel, D.I.: Intercellular communication mediated by the extracellular calcium-sensing receptor. Nat. Cell Biol. 2, 392 (2000)

    Google Scholar 

  41. Kepseu, W.D., Woafo, P.: Intercellular waves propagation in an array of cells coupled through paracrine signaling: a computer simulation study. Phys. Rev. E 76, 041912 (2006)

    Google Scholar 

  42. Goldbeter, A., Dupont, G., Berridge, M.J.: Minimal model for signal-induced Ca\(^{2+}\) oscillations and for their frequency encoding through protein phosphorylation. Proc. Natl. Acad. Sci. USA 87, 1461 (1990)

    Google Scholar 

  43. Kepseu, W.D., Woafo, P.: Long-range interaction effects on calcium-wave propagation. Phys. Rev. E 78, 011922 (2008)

    Google Scholar 

  44. Tabi, C.B., Maïna, I., Mohamadou, A., Ekobena Fouda, H.P., Kofané, T.C.: Wave instability of intercellular Ca\(^{2+}\) oscillations. Europhys. Lett. 106, 18005 (2014)

    Google Scholar 

  45. Tabi, C.B., Maïna, I., Mohamadou, A., Ekobena Fouda, H.P., Kofané, T.C.: Long- range intercellular Ca\(^{2+}\) wave patterns. Phys. A 435, 1 (2015)

    MathSciNet  MATH  Google Scholar 

  46. Tabi, C.B., Etémé, A.S., Mohamadou, A., Kofané, T.C.: Oscillating two-dimensional Ca\(^{2+}\) waves in cell networks with bidirectional paracrine signaling. Waves Rand. Complex Med 31, 1028 (2021)

    MathSciNet  MATH  Google Scholar 

  47. Houart, G., Dupont, G., Goldbeter, A.: Bursting, chaos and birhythmicity originating from self-modulation of the Inositol 1,4,5-trisphosphate signal in a model for intracellular Ca\(^{2+}\) oscillations. Bull. Math. Biol. 61, 507 (1999)

    MATH  Google Scholar 

  48. Sabir, Z.: Stochastic numerical investigations for nonlinear three-species food chain system. Int. J. Biomath. 15, 2250005 (2022)

    MathSciNet  MATH  Google Scholar 

  49. Sabir, Z.: Neuron analysis through the swarming procedures for the singular two-point boundary value problems arising in the theory of thermal explosion. Eur. Phys. J. Plus 137, 638 (2022)

    Google Scholar 

  50. Sabir, Z., Baleanu, D., Ali, M.R., Sadat, R.: A novel computing stochastic algorithm to solve the nonlinear singular periodic boundary value problems. Int. J. Comput. Math. 99, 2091 (2022)

    MathSciNet  MATH  Google Scholar 

  51. Sabir, Z., Ali, M. R., Sadat, R.: Gudermannian neural networks using the optimization procedures of genetic algorithm and active set approach for the three-species food chain nonlinear model. J. Amb. Intel. Human. Comput. Doi: doi.org/10.1007/s12652-021-03638-3

  52. Sabir, Z., Raja, M.A.Z., Sánchez, Y.G.: Solving an infectious disease model considering its anatomical variables with stochastic numerical procedures. J. Health. Eng. 2022, 3774123 (2022)

    Google Scholar 

  53. Wang, Q., Duan, Z., Perc, M., Chen, G.: Synchronization transitions on small-world neuronal networks: effects of information transmission delay and rewiring probability. Europhys. Lett. 83, 50008 (2008)

    Google Scholar 

  54. Wang, Q., Perc, M., Duan, Z., Chen, G.: Synchronization transitions on scale-free neuronal networks due to finite information transmission delays. Phys. Rev. E 80, 026206 (2009)

    Google Scholar 

  55. Ma, J., Tang, J., Zhang, A., Jia, Y.: Robustness and breakup of the spiral wave in a two-dimensional lattice network of neurons. Sci. China Phys. Mech. Astron. 53, 672 (2010)

    Google Scholar 

  56. Shafiei, M., Parastesh, F., Jalili, M., Jafari, S., Perc, M., Slavinec, M.: Effects of partial time delays on synchronization patterns in Izhikevich neuronal networks. Eur. Phys. J. B 92, 36 (2019)

    Google Scholar 

  57. Majhi, S., Perc, M., Ghosh, D.: Chimera states in a multilayer network of coupled and uncoupled neurons. Chaos 27, 073109 (2017)

    MathSciNet  Google Scholar 

  58. Majhi, S., Perc, M., Ghosh, D.: Chimera states in uncoupled neurons induced by a multilayer structure. Sci. Rep. 6, 39033 (2016)

    Google Scholar 

  59. Ma, J., Xu, Y., Wang, C., Jin, W.: Pattern selection and self-organization induced by random boundary initial values in a neuronal network. Phys. A 461, 586 (2016)

    MathSciNet  MATH  Google Scholar 

  60. Tabi, C.B., Etémé, A.S., Kofané, T.C.: Unstable cardiac multi-spiral waves in a FitzHugh-Nagumo soliton model under magnetic flow effect. Nonl. Dyn. 100, 3799 (2020)

    Google Scholar 

  61. Etémé, A.S., Tabi, C.B., Mohamadou, A., Kofané, T.C.: Elimination of spiral waves in a two-dimensional Hindmarsh-Rose neural network under long-range interaction effect and frequency excitation. Phys. A 533, 122037 (2019)

    MathSciNet  MATH  Google Scholar 

  62. Wang, C., Lv, M., Alsaedi, A., Ma, J.: Synchronization stability and pattern selection in a memristive neuronal network. Chaos 27, 113108 (2017)

    MathSciNet  Google Scholar 

  63. Ma, J., Tang, J., Wang, C.-N., Jia, Y.: Propagation and synchronization of Ca\(_{2+}\) spiral waves in excitable media. Int. J. Bifurc. Chaos 21, 587 (2011)

    MathSciNet  Google Scholar 

  64. Busa, W.B., Ferguson, J.E., Joseph, S.K., Williamson, J.R., Nuccitelli, R.: Activation of frog (Xenopus laevis) eggs by inositol trisphosphate I. Characterization of Ca\(^{2+}\) release from intracellular stores. J. Cell Biol. 101, 677 (1985)

    Google Scholar 

  65. Schoch, A., Pahle, J.: Requirements for band-pass activation of Ca\(^{2+}-\) sensitive proteins such as NFAT. Biophys. Chem. 245, 41 (2019)

    Google Scholar 

Download references

Acknowledgements

CBT thanks the Kavli Institute for Theoretical Physics (KITP), University of California Santa Barbara (USA), where this work was supported in part by the National Science Foundation Grant no.NSF PHY-1748958, NIH Grant no.R25GM067110, and the Gordon and Betty Moore Foundation Grant no.2919.01.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conrad Bertrand Tabi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiayo, T.K., Etémé, A.S., Tabi, C.B. et al. Nonlinear dynamics of inositol 1,4,5-trisphosphate-induced Ca\(^{2+}\) patterns in two-dimensional cell networks with paracrine signaling interaction. Nonlinear Dyn 111, 12593–12606 (2023). https://doi.org/10.1007/s11071-023-08491-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08491-x

Keywords

Navigation