Skip to main content
Log in

Multi-fold Darboux transforms and interaction solutions of localized waves to a general vector mKdV equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

A Correction to this article was published on 31 May 2023

This article has been updated

Abstract

In this paper, a new general vector mKdV equation associated with the \((m+n+1)\times (m+n+1)\) matrix spectral problem is proposed and its integrable reduced equation is derived. Based on the gauge transformations between the resulting Lax pairs and Riccati equations related to the spectral problem and auxiliary spectral problem, multi-fold Darboux transforms of the general vector mKdV equation and its integrable reduced equation are constructed, from which an algebraic algorithm for solving the general vector mKdV equation and its integrable reduced equation is given. As an illustrative example of the application of the Darboux transform, one obtains localized wave solutions of the integrable reduced equation such as solitons, soliton molecules, breathers and rogue waves. It is important and interesting that the integrable reduced equation has three new characteristics: (i) it has a two-atom soliton molecule and the two atoms overlap so well that it has only one crest, but it behaves like a two-atom soliton when it interacts with a third solitary wave; (ii) the interaction of its two waves may cause singular waves; and (iii) its analytical solution can be obtained from its singular seed solutions. In addition, the interaction dynamics of various localized wave solutions is analyzed by choosing appropriate parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Change history

References

  1. Zabusky, N.J., Kuskal, M.D.: Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965)

    MATH  Google Scholar 

  2. Novikov, S., Manakov, S.V., Pitaevskii, L.P., Zakharov, V.E.: Theory of Solitons, The Inverse Scattering Method. Consultants Bureau, New York (1984)

    MATH  Google Scholar 

  3. Greig, I.S., Morris, J.L.: A Hopscotch method for the KdV equation. J. Comp. Phys. 20, 64–80 (1976)

    MATH  Google Scholar 

  4. Fliegenthart, A.C.: On finite difference methods for the KdV equation. J. Eng. Math. 5, 137–155 (1971)

    Google Scholar 

  5. Sanz-Serna, J.M., Christie, I.: Petrove-Galerkin methods for nonlinear dispersive waves. J. Comp. Phys. 39, 94–102 (1981)

    MATH  Google Scholar 

  6. Abe, K., Inoue, O.: Fourier expansion solution of the KdV equation. J. Comp. Phys. 34, 202–210 (1980)

    MATH  Google Scholar 

  7. Fornberg, B., Witham, G.B.: A numerical and theoretical study of certain nonlinear wave phenomena. Phil. Trans. Roy. Soc. 289, 373–404 (1978)

    MathSciNet  MATH  Google Scholar 

  8. Wazwaz, A.M.: New (3+1)-dimensional Painlevé integrable fifth-order equation with third-order temporal dispersion. Nonlinear Dyn. 106, 891–897 (2021)

    Google Scholar 

  9. Wazwaz, A.M.: Painlevé integrability and lump solutions for two extended (3+1)- and (2+1)-dimensional Kadomtsev-Petviashvili equation. Nonlinear Dyn. 111, 3623–3632 (2023)

    Google Scholar 

  10. Zhang, R.F., Li, M.C., Gan, J.Y., Li, Q., Lan, Z.Z.: Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method. Chaos Solitons Fract. 154, 111692 (2022)

    MathSciNet  MATH  Google Scholar 

  11. Zhang, R.F., Li, M.C., Albishari, M., Zheng, F.C., Lan, Z.Z.: Generalized lump solutions, classical lump solutions and rogue waves of the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada-like equation. Appl. Math. Comput. 403, 126201 (2021)

    MathSciNet  MATH  Google Scholar 

  12. Zhang, R.F., Li, M.C.: Bilinear residual network method for solving the exactly explicit solutions of nonlinear evolution equations. Nonlinear Dyn. 108, 521–531 (2022)

    Google Scholar 

  13. Zhang, R.F., Bilige, S.: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation. Nonlinear Dyn. 95, 3041–3048 (2019)

    MATH  Google Scholar 

  14. Ablowitz, M.J., Segur, H.: Solitons and the Inverse Scattering Transform. SIAM, Philadelphia (1981)

    MATH  Google Scholar 

  15. Belokolos, E.D., Bobenko, A.I., Enol’skii, V.Z., Its, A.R., Matveev, V.B.: Algebro-Geometric Approach to Nonlinear Integrable Equations. Springer, Berlin (1994)

    MATH  Google Scholar 

  16. Geng, X.G., Zhai, Y.Y., Dai, H.H.: Algebro-geometric solutions of the coupled modified Korteweg-de Vries hierarchy. Adv. Math. 263, 123–153 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Wei, J., Geng, X.G., Zeng, X.: The Riemann theta function solutions for the hierarchy of Bogoyavlensky lattices. Trans. Am. Math. Soc. 371, 1483–1507 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Jia, M.X., Geng, X.G., Wei, J.: Algebro-geometric quasi-periodic solutions to the Bogoyavlensky lattice 2(3) equations. J. Nonlinear Sci. 32, 98 (2022)

    MathSciNet  MATH  Google Scholar 

  19. Matveev, V.B., Salle, M.A.: Darboux Transformations and Solitons. Springer-Verlag, Berlin (1991)

    MATH  Google Scholar 

  20. Gu, C.H., Hu, H.S., Zhou, Z.X.: Darboux Transformations in Integrable Systems: Theory and Their Applications to Geometry. Springer-Verlag, New York (2005)

    MATH  Google Scholar 

  21. Ma, W.X.: Binary darboux transformation for general matrix mKdV equations and reduced counterparts. Chaos Solitons Fract. 146, 110824 (2021)

    MathSciNet  MATH  Google Scholar 

  22. Geng, X.G., Lv, Y.Y.: Darboux transformation for an integrable generalization of the nonlinear Schrödinger equation. Nonlinear Dyn. 69, 1621–1630 (2012)

    MATH  Google Scholar 

  23. Geng, X.G., Li, R.M., Xue, B.: A vector general nonlinear Schrödinger equation with \((m + n)\) components. J. Nonlinear Sci. 30, 991–1013 (2020)

    MathSciNet  MATH  Google Scholar 

  24. Li, R.M., Geng, X.G.: On a vector long wave-short wave-type model. Stud. Appl. Math. 144, 164–184 (2020)

    MathSciNet  MATH  Google Scholar 

  25. Geng, X.G., Li, Y.H., Xue, B.: A second-order three-wave interaction system and its rogue wave solutions. Nonlinear Dyn. 105, 2575–2593 (2021)

    Google Scholar 

  26. Li, R.M., Geng, X.G.: Periodic-background solutions of Kadomtsev-Petviashvili I equation. Z. Angew. Math. Phys. 74, 68 (2023)

    MathSciNet  MATH  Google Scholar 

  27. Li, R.M., Geng, X.G., Xue, B.: Darboux transformations for a matrix long-wave-short-wave equation and higher-order rational rogue-wave solutions. Math. Meth. Appl. Sci. 43, 948–967 (2020)

    MathSciNet  MATH  Google Scholar 

  28. Ma, W.X., Qin, Z.Y., Lu, X.: Lump solutions to dimensionally reduced \(p\)-gKP and \(p\)-gBKP equations. Nonlinear Dyn. 84, 923–931 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Ma, W.X., Zhou, Y.: Lump solutions to nonlinear partial differential equations via Hirota bilinear forms. J. Diff. Equ. 264, 2633–2659 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Mu, G., Qin, Z.Y., Grimshaw, R.: Dynamics of rogue waves on a multisoliton background in a vector nonlinear Schrödinger equation. SIAM J. Appl. Math. 75, 1–20 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Mu, G., Qin, Z.Y.: High order rational solitons and their dynamics of the 3-wave resonant interaction equation. Phys. D 435, 133287 (2022)

    MathSciNet  MATH  Google Scholar 

  32. Geng, X.G., Wang, K.D., Cheng, M.M.: Long-time asymptotics for the spin-1 Gross-Pitaevskii equation. Commun. Math. Phys. 382, 585–611 (2021)

    MathSciNet  MATH  Google Scholar 

  33. Geng, X.G., Liu, H.: The nonlinear steepest descent method to long-time asymptotics of the coupled nonlinear Schrödinger equation. J. Nonlinear Sci. 28, 739–763 (2018)

    MathSciNet  MATH  Google Scholar 

  34. Liu, W.H., Geng, X.G., Wang, K.D., Chen, M.M.: Spectral analysis and long-time asymptotics for the Harry Dym-type equation with the Schwartz initial data. J. Diff. Equ. 357, 181–235 (2023)

    MathSciNet  MATH  Google Scholar 

  35. Wang, X., Wei, J., Wang, L., Zhang, J.L.: Baseband modulation instability, rogue waves and statetransitions in a deformed Fokas-Lenells equation. Nonlinear Dyn. 97, 343–353 (2019)

    MATH  Google Scholar 

  36. Hu, A.J., Li, M.H., He, J.S.: Dynamic of the smooth positions of the higher-order Chen-Lee-Liu equation. Nonlinear Dyn. 104, 4329–4338 (2021)

    Google Scholar 

  37. Wu, J.P.: A new approach to investigate the nonlinear dynamics in a (3+1)-dimensional nonlinear evolution equation via Wronskian conditionwith a free function. Nonlinear Dyn. 103, 1795–1804 (2021)

    Google Scholar 

  38. Li, R.M., Geng, X.G.: A matrix Yajima-Oikawa long-wave-short-wave resonance equation, Darboux transformations and rogue wave solutions. Commun. Nonlinear Sci. Numer. Simul. 90, 105408 (2020)

    MathSciNet  MATH  Google Scholar 

  39. Wang, X., Wang, L., Liu, C., Guo, B., Wei, J.: Rogue waves, semirational rogue waves and \(W\)-shaped solitons in the three-level coupled Maxwell-Bloch equations. Commun. Nonlinear Sci. Numer. Simul. 107, 106172 (2022)

    MathSciNet  MATH  Google Scholar 

  40. Wang, X., Wei, J.: Three types of Darboux transformation and general soliton solutions for the space-shifted nonlocal \(PT\) symmetric nonlinear Schrödinger equation. Appl. Math. Lett. 130, 107998 (2022)

    MATH  Google Scholar 

  41. Geng, X.G., Li, R.M., Xue, B.: A vector Geng-Li model: new nonlinear phenomena and breathers on periodic background waves. Phys. D 434, 133270 (2022)

    MathSciNet  MATH  Google Scholar 

  42. Geng, X.G., Wei, J.: Three-sheeted Riemann surface and solutions of the Itoh-Narita-Bogoyavlensky lattice hierarchy. Rev. Math. Phys. 34, 2250009 (2022)

    MathSciNet  MATH  Google Scholar 

  43. Sakkaravarthi, K., Mareeswaran, R. Babu., Kanna, T.: Bright matter-wave bound soliton molecules in spin-1 Bose-Einstein condensates with non-autonomous nonlinearities. Phys. D 448, 133694 (2023)

    MathSciNet  MATH  Google Scholar 

  44. Chen, J.B., Pelinovsky, D.E.: Periodic travelling waves of the modified KdV equation and rogue waves on the periodic background. J. Nonlinear Sci. 29, 2797–2843 (2019)

    MathSciNet  MATH  Google Scholar 

  45. Chen, J.B., Pelinovsky, D.E.: Rogue periodic waves of the modified KdV equation. Nonlinearity 31, 1955–1980 (2018)

    MathSciNet  MATH  Google Scholar 

  46. Li, R.M., Geng, X.G.: Rogue periodic waves of the sine-Gordon equation. Appl. Math. Lett. 102, 106147 (2020)

    MathSciNet  MATH  Google Scholar 

  47. Li, R.M., Geng, X.G.: Periodic-background solutions for the Yajima-Oikawa long-wave-short-wave equation. Nonlinear Dyn. 109, 1053–1067 (2022)

    Google Scholar 

  48. Stratmann, M., Pagel, T., Mitschke, F.: Experimental observation of temporal soliton molecules. Phys. Rev. Lett. 95, 143902 (2005)

    Google Scholar 

  49. Liu, X.M., Yao, X.K., Cui, Y.D.: Real-time observation of the buildup of soliton molecules. Phys. Rev. Lett. 121, 023905 (2018)

    Google Scholar 

  50. Herink, G., Kurtz, F., Jalali, B., Solli, D.R., Ropers, C.: Real time spectral interferometry probes the internal dynamics of femtosecond soliton molecules. Science 356, 50–54 (2017)

    Google Scholar 

  51. Peng, J.S., Boscolo, S., Zhao, Z.R., et al.: Breathing dissipative solitons in mode-locked fiber lasers. Sci. Adv. 5, 1110 (2019)

    Google Scholar 

  52. Xu, G., Gelash, A., Chabchoub, A., Zakharov, V., Kibler, B.: Breather wave molecules. Phys. Rev. Lett. 122, 084101 (2019)

    Google Scholar 

  53. Martin, A.D.: Collision-induced frequency shifts in bright matter-wave solitons and soliton molecules. Phys. Rev. A 93, 023631 (2016)

    Google Scholar 

  54. Al Khawaja, U., Stoof, H.T.C.: Formation of matter-wave soliton molecules. New J. Phys. 13, 085003 (2011)

    Google Scholar 

  55. Lakomy, K., Nath, R., Santos, L.: Soliton molecules in dipolar Bose-Einstein condensates. Phys. Rev. A 86, 013610 (2012)

    Google Scholar 

  56. Al Khawaja, U.: Interaction forces among two-dimensional bright solitons and many-soliton molecules. Phys. Rev. E 85, 056604 (2012)

    Google Scholar 

  57. Yan, Z.W., Lou, S.Y.: Soliton molecules in Sharma-Tasso-Olver-Burgers equation. Appl. Math. Lett. 104, 106271 (2020)

    MathSciNet  MATH  Google Scholar 

  58. Crasovan, L.C., Kartashov, Y.V., Mihalache, D., et al.: Soliton molecules: robust clusters of spatiotemporal optical solitons. Phys. Rev. E 67, 046610 (2003)

    Google Scholar 

  59. Rohrmann, P., Hause, A., Mitschke, F.: Two-soliton and three-soliton molecules in optical fibers. Phys. Rev. A 87, 043834 (2013)

    Google Scholar 

  60. Yin, C.Y., Berloff, N.G., Pérez-García, V.M., et al.: Coherent atomic soliton molecules for matter-wave switching. Phys. Rev. A 83, 051605 (2011)

    Google Scholar 

  61. Xu, D.H., Lou, S.Y.: Dark soliton molecules in nonlinear optics. Acta Phys. Sin. 69, 014208 (2020)

    Google Scholar 

  62. Hause, A., Hartwig, H., Seifert, B., Stolz, H., et al.: Phase structure of soliton molecules. Phys. Rev. A 76, 063836 (2007)

    Google Scholar 

Download references

Funding

This paper is supported by National Natural Science Foundation of China (Grant Nos. 12001496, 11931017, 11871440).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contribute equally to the paper.

Corresponding author

Correspondence to Jingru Geng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Li, Y. & Geng, J. Multi-fold Darboux transforms and interaction solutions of localized waves to a general vector mKdV equation. Nonlinear Dyn 111, 12525–12540 (2023). https://doi.org/10.1007/s11071-023-08482-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08482-y

Keywords

Navigation