Skip to main content
Log in

Manipulating matter rogue waves in Bose–Einstein condensates trapped in time-dependent complicated potentials

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Under some constraints, we build exact and approximate first- and second-order rogue wave (RW) solutions with two control and one free parameters for a quasi-one-dimensional Gross–Pitaevskii (GP) equation with a time-varying interatomic interaction, an external trap and gain/loss term through the similarity transformation technique. Considering three different forms of the strength of the two-body interatomic interaction, we employ these rogue wave solutions to study the dynamics of matter rogue waves and superposed rogue waves in respectively one-component and coherently two-component Bose–Einstein condensates (BECs) when the gain/loss of the condensate atoms is taken into consideration. Our results show that the solution parameters (two control and one free parameters) can be used for formation and manipulating first- and second-order in BEC systems under consideration. We also show that when we change parameters appearing in the strength of the two-body interatomic interaction, first- and second-order RWs can be reduced to either one- or multiple-breather solitons or rogue wave multiplets. Our results also show that the control and free parameter appearing in the RW solutions can be used for controlling the splitting of the rogue wave components into multi-peak solutions. In the context of coherently coupled BECs, we show that linear superposition of different rogue wave solutions of the quasi-one-dimensional GP equation results into four kinds of nonlinear coherent structures namely, coexisting first–first-order (F–F) RWs, second–second-order (S–S) RWs, first–second-order (F–S) RWs, and second–first-order (S–F) RWs. These four kinds of superposed rogue waves are investigated in some detail. Also, the effects solution parameters as well as those of the intra-component strength on these four kinds of composite waves are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Anderson, M.H., Ensher, J.R., Matthews, M.R., Wieman, C.E., Cornel, E.A.: Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198 (1995)

    Google Scholar 

  2. Dalfovo, F., Giorgini, S., Pitaevskii, L.P., Stringari, S.: Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463 (1999)

    Google Scholar 

  3. The Vinh Ngo, Tsarev, D.V., Lee, R.K., Alodjants, A.P.: Bose–Einstein condensate soliton qubit states for metrological applications. Scientifc Reports 11, 19363 (2021)

  4. Zhang, Y.L., Jia, C.Y., Liang, Z.X.: Dynamics of two dark solitons in a polariton condensate. Chin. Phys. Lett. 39, 020501 (2022)

    Google Scholar 

  5. Hansen, S.D., Nygaard, N., Mølmer, K.: Scattering of matter wave solitons on localized potentials. Appl. Sci. 2021, 2294 (2021)

    Google Scholar 

  6. Khaykovich, L., Schreck, F., Ferrari, G., Bourdel, T., Cubizolles, J., Carr, L.D., Castin, Y., Salomon, C.: Formation of a matter-wave bright soliton. Science 296, 1290 (2002)

    Google Scholar 

  7. Abo-Shaeer, J.R., Raman, C., Ketterle, W.: Formation and decay of vortex lattices in Bose–Einstein condensates at finite temperatures. Phys. Rev. Lett. 88, 070409 (2002)

    Google Scholar 

  8. Donadello, Simone, Serafini, Simone, Tylutki, Marek, Pitaevskii, Lev P., Dalfovo, Franco, Lamporesi, Giacomo, Ferrari, Gabriele: Observation of solitonic vortices in Bose–Einstein condensates. Phys. Rev. Lett. 113, 065302 (2014)

    Google Scholar 

  9. Kengne, E., Liu, W.M.: Nonlinear waves: from Dissipative Solitons to Magnetic Solitons. (Springer Singapore, eBook ISBN 978-981-19-6744-3, 2023)

  10. Mohamadou, A., Wamba, E., Doka, S.Y., Ekogo, T.B., Kofane, T.C.: Generation of matter-wave solitons of the Gross–Pitaevskii equation with a time-dependent complicated potential. Phys. Rev. A 84, 023602 (2011)

    Google Scholar 

  11. Bhat, Ishfaq Ahmad, Sivaprakasam, S., Malomed, Boris A.: Modulational instability and soliton generation in chiral Bose–Einstein condensates with zero-energy nonlinearity. Phys. Rev. E 103, 032206 (2021)

    MathSciNet  Google Scholar 

  12. Li, J., Zhang, Y., Zeng, J.: Matter-wave gap solitons and vortices in three-dimensional parity-time-symmetric optical lattices. iScience 25, 104026 (2022)

    Google Scholar 

  13. Andreev, P.A., Kuz’menkov, L.S.: Exact analytical soliton solutions in dipolar Bose–Einstein condensates. Eur. Phys. J. D 68, 270 (2014)

    Google Scholar 

  14. Kengne, E., Liu, W.M., Malomed, B.A.: Spatiotemporal engineering of matter-wave solitons in Bose–Einstein condensates. Phys. Rep. 899, 1–62 (2021)

    MathSciNet  MATH  Google Scholar 

  15. Li, Jun-Zhu., Luo, Huan-Bo., Li, Lu.: Bessel vortices in spin-orbit-coupled spin-1 Bose–Einstein Bessel vortices in spin-orbit-coupled spin-1 Bose–Einstein. Phys. Rev. A 106, 063321 (2022)

    MATH  Google Scholar 

  16. Tan, Yanchang, Bai, Xiao-Dong., Li, Tiantian: Super rogue waves: collision of rogue waves in Bose–Einstein condensate. Phys. Rev. E. 106, 014208 (2022)

    Google Scholar 

  17. Manikandan, K., Muruganandam, P., Senthilvelan, M., Lakshmanan, M.: Manipulating matter rogue waves and breathers in Bose–Einstein condensates. Phys. Rev. E 90, 062905 (2014)

    Google Scholar 

  18. Kengne, E., Malomed, B.A., Liu, W.M.: Phase engineering of chirped rogue waves in Bose–Einstein condensates with a variable scattering length in an expulsive potential. Commun. Nonlinear. Sci. Numer. Simulat. 103, 105983 (2021)

    MathSciNet  MATH  Google Scholar 

  19. Zhao, Li-Chen., Xin, Guo-Guo., Yang, Zhan-Ying.: Transition dynamics of a bright soliton in a binary Bose–Einstein condensate. J. Opt. Soc. Am. B 34, 2569 (2017)

    Google Scholar 

  20. Takeuchi, H., Mizuno, Y., Dehara, K.: Phase-ordering percolation and an infinite domain wall in segregating binary Bose–Einstein condensates. Phys. Rev. A 92, 043608 (2015)

    Google Scholar 

  21. Malomed, B.A.: Past and present trends in the development of the pattern-formation theory: domain walls and quasicrystals. Physics 3, 1015–1045 (2021)

    Google Scholar 

  22. Leonard, J.R., Hu, L., High, A.A., Hammack, A.T., Wu, Congjun, Butov, L.V., Campman, K.L., Gossard, A.C.: Moiré pattern of interference dislocations in condensate of indirect excitons. Nat. Commun. 12, 1175 (2021)

    Google Scholar 

  23. Jin, Su., Lyu, Hao, Zhang, Yongping: Self-interfering dynamics in Bose–Einstein condensates with engineered dispersions. Phys. Lett. A 443, 128218 (2022)

    MathSciNet  MATH  Google Scholar 

  24. Zhao, L.C., Ling, L., Yang, Z.Y., Liu, J.: Properties of the temporal-spatial interference pattern during soliton interaction. Nonlinear Dyn. 83, 659–665 (2016)

    MathSciNet  Google Scholar 

  25. Abdullaev, FKh., Hadi, M.S.A., Salerno, M., Umarov, B.: Compacton matter waves in binary Bose gases under strong nonlinear management. Phys. Rev. A 90, 063637 (2014)

    Google Scholar 

  26. Berrada, T.: Interferometry with Interacting Bose-Einstein Condensates in a Double-Well Potential (Springer Cham, eBook ISBN 978-3-319-27233-7, 2015)

  27. Rubeni, D., Foerster, A., Mattei, E., Roditi, I.: Quantum phase transitions in Bose–Einstein condensates from a Bethe ansatz perspective. Nuclear Phys. B 856, 698–715 (2012)

    MATH  Google Scholar 

  28. Eto, M., Hamada, Y., Nitta, M.: Stable Z-strings with topological polarization in two Higgs doublet model. J. High Energ. Phys. 2022, 99 (2022)

    MathSciNet  MATH  Google Scholar 

  29. Arazo, Maria, Guilleumas, Montserrat, Mayol, Ricardo, Modugno, Michele: Dynamical generation of dark-bright solitons through the domain wall of two immiscible Bose–Einstein condensates. Phys. Rev. A 104, 043312 (2021)

    Google Scholar 

  30. Manikandan, K., Muruganandam, P., Senthilvelan, M., Lakshmanan, M.: Manipulating localized matter waves in multicomponent Bose–Einstein condensates. Phys. Rev. E 93, 032212 (2016)

    MathSciNet  Google Scholar 

  31. Farolfi, A., Zenesini, A., Cominotti, R., Trypogeorgos, D., Recati, A., Lamporesi, G., Ferrari, G.: Manipulation of an elongated internal Josephson junction of bosonic atoms. Phys. Rev. A 104, 023326 (2021)

    Google Scholar 

  32. Saito, H.: Creation and manipulation of quantized vortices in Bose–Einstein condensates using reinforcement learning. J. Phys. Soc. Jpn. 89, 074006 (2020)

    Google Scholar 

  33. Fang, Zhou, Kai, Wen, Liang-Wei, Wang, Fang-De, Liu, Wei, Han, Peng-Jun, Wang, Liang-Hui, Huang, Liang-Chao, Chen, Zeng-Ming, Meng, Jing, Zhang: Experimental study of coherent manipulation in \(^{87}\)Rb Bose–Einstein condensate with phase difference of double stimulated Raman adiabatic passage. Acta Phys. Sin. 70, 154204 (2021)

    Google Scholar 

  34. Bodnár, T., Galdi, G.P., Nečasová, Š.: Waves in Flows (Birkhäuser Cham, eBook ISBN 978-3-030-67845-6, 2021)

  35. Leszczyszyn, A.M., El, G.A., Gladush, Yu.G., Kamchatnov, A.M.: Transcritical flow of a Bose–Einstein condensate through a penetrable barrier. Phys. Rev. A 79, 063608 (2009)

    Google Scholar 

  36. Jendrzejewski, F., Eckel, S., Murray, N., Lanier, C., Edwards, M., Lobb, C.J., Campbell, G.K.: Resistive flow in a weakly interacting Bose–Einstein condensate. Phys. Rev. Lett. 113, 045305 (2014)

    Google Scholar 

  37. Kamchatnov, A.M., Korneev, S.V.: Flow of a Bose–Einstein condensate in a quasi-one-dimensional channel under the action of a piston. J. Exp. Theor. Phys. 110, 170 (2010)

    Google Scholar 

  38. Kwon, W.J., Moon, G., Choi, J.-Y., Seo, S.W., Shin, Y.-I.: Relaxation of superfluid turbulence in highly oblate Bose–Einstein condensates. Phys. Rev. A 90, 063627 (2014)

    Google Scholar 

  39. Nguyen, Viet-Bac., Do, Quoc-Vu., Pham, Van-Sang.: An OpenFOAM solver for multiphase and turbulent flow. Phys. Fluids 32, 043303 (2020)

    Google Scholar 

  40. Pitaevskii, L.P., Stringari, S.: Bose–Einstein Condensation. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  41. Chen, C.C., González Escudero, R., Minář, J., Pasquiou, Benjamin, Bennetts, Shayne, Schreck, Florian: Continuous Bose–Einstein condensation. Nature 606, 683 (2022)

    Google Scholar 

  42. Rätzel, Dennis, Schützhold, Ralf: Decay of quantum sensitivity due to three-body loss in Bose–Einstein condensates. Phys. Rev. A 103, 063321 (2021)

    MathSciNet  Google Scholar 

  43. Cheng, Yanting, Shi, Zhe-Yu.: Many-body dynamics with time-dependent interaction. Phys. Rev. A 104, 023307 (2021)

    MathSciNet  Google Scholar 

  44. Yuea, Yunfei, Huanga, Lili, Chen, Yong: Modulation instability, rogue waves and spectral analysis for the sixth-order nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simulat. 89, 105284 (2020)

    Google Scholar 

  45. Shou, Chong, Huang, Guoxiang: Storage, splitting, and routing of optical peregrine solitons in a coherent atomic system. Front. Phys. 9, 594680 (2021)

  46. Ohta, Y., Yang, J.: General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation. Proc. R. Soc. A 468, 1716–1740 (2012)

    MathSciNet  MATH  Google Scholar 

  47. Biondini, G., Kovai, G.: Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions. J. Math. Phys. 55, 031506 (2014)

    MathSciNet  MATH  Google Scholar 

  48. Weng, Weifang, Yan, Zhenya: Inverse scattering and N-triple-pole soliton and breather solutions of the focusing nonlinear Schr ödinger hierarchy with nonzero boundary conditions. Phys. Lett. A 407, 127472 (2021)

    MATH  Google Scholar 

  49. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge, UK (2004)

    MATH  Google Scholar 

  50. khmediev, N., Ankiewicz, A., Soto-Crespo, J.M.: Rogue waves and rational solutions of the nonlinear Schrödinger equation. Phys. Rev. E 80, 026–601 (2009)

    Google Scholar 

  51. Sun, Wen-Rong., Tiana, Bo., Jiang, Yan, Zhen, Hui-Ling.: Rogue matter waves in a Bose–Einstein condensate with the external potential. Eur. Phys. J. D 68, 282 (2014)

    Google Scholar 

  52. Saito, H., Ueda, M.: Dynamically stabilized bright solitons in a two-dimensional Bose–Einstein condensate. Phys. Rev. Lett. 90, 040403 (2003)

    Google Scholar 

  53. Ankiewicz, A., Kedziora, D.J., Akhmediev, N.: Rogue waves triplets. Phys. Lett. A 375, 2782 (2011)

    MATH  Google Scholar 

  54. Babu Mareeswaran, R., Kanna, T.: Superposed nonlinear waves in coherently coupled Bose–Einstein condensates. Phys. Lett. A 380, 3244 (2016)

    MathSciNet  Google Scholar 

  55. Zhao, L.C., Ling, L., Yang, Z.Y., Liu, J.: Pair-tunneling induced localized waves in a vector nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 23, 21 (2015)

    MathSciNet  MATH  Google Scholar 

  56. Kurosaki, T., Wadati, M.: Matter-wave bright solitons with a finite background in spinor Bose–Einstein condensates. J. Phys. Soc. Jpn. 76, 084002 (2007)

    Google Scholar 

Download references

Funding

This work was supported by the Chinese Academy of Sciences President’s International Fellowship Initiative (PIFI) under Grant No. 2023VMA0019, the National Key R &D Program of China under grants No. 2021YFA1400900, 2021YFA0718300, 2021YFA1402100, NSFC under grants Nos. 61835013, 12234012, Space Application System of China Manned Space Program

Author information

Authors and Affiliations

Authors

Contributions

EK: Conceptualization, Methodology, Software, Writing—original draft, Investigation, Data curation, Visualization, Writing—review & editing.

Corresponding author

Correspondence to Emmanuel Kengne.

Ethics declarations

Conflict of interest

The author declares that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dedication: The author dedicates this work to his grandson Willy Amstrong Emmanuel Tenadjang II, born on April 9th, 2023.

Appendix: (Analytical expressions for \(F\left( \xi ,\tau \right) \) and \(G\left( \xi ,\tau \right) \) appearing in Eq. (8b))

Appendix: (Analytical expressions for \(F\left( \xi ,\tau \right) \) and \(G\left( \xi ,\tau \right) \) appearing in Eq. (8b))

Polynomials \(F\left( \xi ,\tau \right) \) and \(G\left( \xi ,\tau \right) \) used in the definition of the second-order RW solution (8b) are given as

$$\begin{aligned} F\left( \xi ,\tau \right)= & {} 24\left[ \left( 3\xi -6\xi ^{2}+4\xi ^{3}-2\xi ^{4}-48\tau ^{2}\right. \right. \nonumber \\{} & {} \left. \left. +48\xi \tau ^{2}-48\xi ^{2}\tau ^{2}-160\tau ^{4}\right) \right. \nonumber \\{} & {} +i\tau \left( -12+12\xi -16\xi ^{3}+8\xi ^{4}+32\tau ^{2}\right. \nonumber \\{} & {} \left. -64\xi \tau ^{2} +64\xi ^{2}\tau ^{2}+128\tau ^{4}\right) \nonumber \\{} & {} {+}\left. 6\phi \left( 1{-}2\xi {+}\xi ^{2}{-}4i\tau {+}4i\xi \tau {-}4\tau ^{2}\right) \right. \nonumber \\{} & {} \left. +6\overline{\phi }_{1}\left( -\xi ^{2}+4i\xi \tau +4\tau ^{2}\right) \right] , \end{aligned}$$
(26a)
$$\begin{aligned} G\left( \xi ,\tau \right)= & {} 9-36\xi +72\xi ^{2}-72\xi ^{3}+72\xi ^{4}-48\xi ^{5}\nonumber \\{} & {} +16\xi ^{6} +1024\tau ^{6}+144\phi \overline{\phi } \nonumber \\{} & {} +96\tau ^{2}\left( 3+3\xi -4\xi ^{3}+2\xi ^{4}\right) \nonumber \\{} & {} +384\tau ^{4}\left( 5{-}2\xi +2\xi ^{2}\right) \nonumber \\{} & {} \quad {+}24\left( \phi {+}\overline{\phi }\right) \left( 3\xi ^{2}{-}2\xi ^{3}{-}12\tau ^{2}{+}24\xi \tau ^{2}\right) \nonumber \\{} & {} {+}48i\left( \phi {-}\overline{\phi }\right) \tau \left( 3{+}6\xi {-}6\xi ^{2}{+}8\tau ^{2}\right) , \nonumber \\ \end{aligned}$$
(26b)

where \(\phi \) is an arbitrary complex number with complex conjugate \( \overline{\phi }.\) Computing F and G for \(\phi =-1/12,\) we find pagination

$$\begin{aligned}{} & {} F\left( \xi ,\tau \right) = 9-18\left( 2\xi -1\right) ^{2}-3\left( 2\xi -1\right) ^{4}-864\tau ^{2}\nonumber \\{} & {} \quad -3840\tau ^{4}-288\tau ^{2}\left( 2\xi -1\right) ^{2} \nonumber \\{} & {} \quad +i\tau \left[ {-}180{-}72\left( 2\xi {-}1\right) ^{2}{+}12\left( 2\xi {-}1\right) ^{4}\right. \nonumber \\{} & {} \quad \left. {+}384\tau ^{2}{+}3072\tau ^{4}{+}384\tau ^{2}\left( 2\xi {-}1\right) ^{2}\right] , \end{aligned}$$
(27)
$$\begin{aligned}{} & {} G\left( \xi ,\tau \right) =\tau ^{2}\left[ 288+1728\tau ^{2}+1024\tau ^{4}\right. \nonumber \\{} & {} \quad \left. {+}192\tau ^{2}\left( 2\xi {-}1\right) ^{2}{+}24\left( 2\xi ^{2}{-}2\xi {-}1\right) ^{2}\right] \nonumber \\{} & {} \quad {+}\frac{1}{4}\left[ 9{+}27\left( 2\xi {-}1\right) ^{2}{+}3\left( 2\xi {-}1\right) ^{4}{+}\left( 2\xi {-}1\right) ^{6}\right] . \nonumber \\ \end{aligned}$$
(28)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kengne, E. Manipulating matter rogue waves in Bose–Einstein condensates trapped in time-dependent complicated potentials. Nonlinear Dyn 111, 11497–11520 (2023). https://doi.org/10.1007/s11071-023-08431-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08431-9

Keywords

Navigation