Skip to main content

Advertisement

Log in

Nonlinear elastic waves in a chain type of metastructure: theoretical analysis and parametric optimization

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Nonlinear elastic wave propagations in metamaterials and metastructures exhibit much richer dynamic behaviors in comparison with the linear cases. This paper studies the generation of superharmonic wave in a chain type of multi-cell aperiodic structure with nonlinear stiffness. An analytical approach, integrated with the first-order perturbation method and the harmonic balance method, is developed to describe nonlinear wave response with spectrum of higher-order harmonics. The cubic nonlinearity brings the amplitude-dependent bandgap and the nonreciprocal wave phenomenon with the combination of aperiodicity in arrangement, which are presented via both analytical approach and numerical computation. Further, the study introduces a new strategy of parametric optimization on the distribution of multiple local resonances, based on the genetic algorithm method. The optimized metastructures exhibit noteworthy wave properties, including the broadband nonlinear wave suppression, the tunability of wave attenuation on transmissibility level, and the unidirectional wave transmission, by designing different optimization functions in the developed optimization scheme. This work provides an idea to elucidate nonlinear wave responses caused by nonlinear stiffness and to explore wave properties via parametric optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are presented in tables in this article.

References

  1. Ma, G.C., Sheng, P.: Acoustic metamaterials: from local resonances to broad horizons. Sci. Adv. 2(2), e1501595 (2016)

    Google Scholar 

  2. Hussein, M.I., Leamy, M.J., Ruzzene, M.: Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook. Appl. Mech. Rev. 66(4), 040802 (2014)

    Google Scholar 

  3. Deymier, P.A.: Acoustic Metamaterials and Phononic Crystals. Springer Science & Business Media, Heidelberg (2013)

    Google Scholar 

  4. Qi, J.X., Chen, Z.H., Jiang, P., Hu, W.X., Wang, Y.H., Zhao, Z., Cao, X.F., Zhang, S.S., Tao, R., Li, Y., Fang, D.N.: Recent progress in active mechanical metamaterials and construction principles. Adv. Sci. 9(1), 2102662 (2021)

    Google Scholar 

  5. Patil, G.U., Matlack, K.H.: Review of exploiting nonlinearity in phononic materials to enable nonlinear wave responses. Acta Mech. 233(1), 1–46 (2022)

    MathSciNet  MATH  Google Scholar 

  6. Zhu, R., Liu, X.N., Hu, G.K., Sun, C.T., Huang, G.L.: A chiral elastic metamaterial beam for broadband vibration suppression. J. Sound Vib. 333(10), 2759–2773 (2014)

    Google Scholar 

  7. Wu, Z.J., Liu, W.Y., Li, F.M., Zhang, C.Z.: Band-gap property of a novel elastic metamaterial beam with X-shaped local resonators. Mech. Syst. Signal Process. 134, 106357 (2019)

    Google Scholar 

  8. Wu, Y., Lai, Y., Zhang, Z.Q.: Elastic metamaterials with simultaneously negative effective shear modulus and mass density. Phys. Rev. Lett. 107(10), 105506 (2011)

    Google Scholar 

  9. Zhu, R., Liu, X.N., Hu, G.K., Sun, C.T., Huang, G.L.: Negative refraction of elastic waves at the deep subwavelength scale in a single-phase metamaterial. Nat. Commun. 5, 5510 (2014)

    Google Scholar 

  10. Yasuda, H., Yang, J.: Reentrant origami-based metamaterials with negative Poisson’s ratio and bistability. Phys. Rev. Lett. 114(18), 185502 (2015)

    Google Scholar 

  11. Jin, L., Khajehtourian, R., Mueller, J., Rafsanjani, A., Tournat, V., Bertoldi, K., Kochmann, D.M.: Guided transition waves in multistable mechanical metamaterials. Proc. Natl. Acad. Sci. U S A 117(5), 2319–2325 (2020)

    MathSciNet  MATH  Google Scholar 

  12. Librandi, G., Tubaldi, E., Bertoldi, K.: Programming nonreciprocity and reversibility in multistable mechanical metamaterials. Nat. Commun. 12(1), 3454 (2021)

    Google Scholar 

  13. Zhang, H.K., Chen, Y., Liu, X.N., Hu, G.K.: An asymmetric elastic metamaterial model for elastic wave cloaking. J. Mech. Phys. Solids 135, 103796 (2020)

    MathSciNet  Google Scholar 

  14. Nassar, H., Yousefzadeh, B., Fleury, R., Ruzzene, M., Alù, A., Daraio, C., Norris, A.N., Huang, G.L., Haberman, M.R.: Nonreciprocity in acoustic and elastic materials. Nat. Rev. Mater. 5(9), 667–685 (2020)

    Google Scholar 

  15. Lu, Z.C., Norris, A.N.: Nonreciprocal and directional wave propagation in a two-dimensional lattice with bilinear properties. Nonlinear Dyn. 106, 2449–2463 (2021)

    Google Scholar 

  16. Hu, G.B., Austin, A.C.M., Sorokin, V., Tang, L.H.: Metamaterial beam with graded local resonators for broadband vibration suppression. Mech. Syst. Signal Process. 146, 106982 (2021)

    Google Scholar 

  17. Wang, Z., Zhang, Q., Zhang, K., Hu, G.K.: Tunable digital metamaterial for broadband vibration isolation at low frequency. Adv. Mater. 28(44), 9857–9861 (2016)

    Google Scholar 

  18. Chen, Y.Y., Hu, G.K., Huang, G.L.: A hybrid elastic metamaterial with negative mass density and tunable bending stiffness. J. Mech. Phys. Solids 105, 179–198 (2017)

    MathSciNet  Google Scholar 

  19. Gao, Y.Q., Wang, L.F.: Nonlocal active metamaterial with feedback control for tunable bandgap and broadband nonreciprocity. Int. J. Mech. Sci. 219, 107131 (2022)

    Google Scholar 

  20. Abdeljaber, O., Avci, O., Inman, D.J.: Optimization of chiral lattice based metastructures for broadband vibration suppression using genetic algorithms. J. Sound Vib. 369, 50–62 (2016)

    Google Scholar 

  21. Meng, H., Chronopoulos, D., Fabro, A.T., Maskery, I., Chen, Y.: Optimal design of rainbow elastic metamaterials. Int. J. Mech. Sci. 165, 105185 (2020)

    Google Scholar 

  22. Wu, K., Hu, H.Y., Wang, L.F.: Optimization of a type of elastic metamaterial for broadband wave suppression. Proc. R. Soc. A Math. Phys. Eng. Sci. 477(2250), 20210337 (2021)

    MathSciNet  Google Scholar 

  23. Wu, K., Hu, H.H., Wang, L.F., Gao, Y.Q.: Parametric optimization of an aperiodic metastructure based on genetic algorithm. Int. J. Mech. Sci. 214, 106878 (2022)

    Google Scholar 

  24. Christiansen, R.E., Sigmund, O.: Designing meta material slabs exhibiting negative refraction using topology optimization. Struct. Multidiscip. Optim. 54(3), 469–482 (2016)

    MathSciNet  Google Scholar 

  25. Dong, H.W., Zhao, S.D., Wang, Y.S., Zhang, C.Z.: Topology optimization of anisotropic broadband double-negative elastic metamaterials. J. Mech. Phys. Solids 105, 54–80 (2017)

    MathSciNet  Google Scholar 

  26. Chen, W., Huang, X.D.: Topological design of 3D chiral metamaterials based on couple-stress homogenization. J. Mech. Phys. Solids 131, 372–386 (2019)

    MathSciNet  Google Scholar 

  27. Nguyen, C., Zhuang, X.Y., Chamoin, L., Zhao, X.Z., Nguyen-Xuan, H., Rabczuk, T.: Three-dimensional topology optimization of auxetic metamaterial using isogeometric analysis and model order reduction. Comput. Methods Appl. Mech. Eng. 371, 113306 (2020)

    MathSciNet  MATH  Google Scholar 

  28. Zhang, X.P., Xing, J., Liu, P., Luo, Y.J., Kang, Z.: Realization of full and directional band gap design by non-gradient topology optimization in acoustic metamaterials. Extrem. Mec. Lett. 42, 101126 (2021)

    Google Scholar 

  29. Li, Z.N., Wang, Y.Z., Wang, Y.S.: Tunable nonreciprocal transmission in nonlinear elastic wave metamaterial by initial stresses. Int. J. Solids Struct. 182–183, 218–235 (2020)

    Google Scholar 

  30. Zega, V., Silva, P.B., Geers, M.G.D., Kouznetsova, V.G.: Experimental proof of emergent subharmonic attenuation zones in a nonlinear locally resonant metamaterial. Sci. Rep. 10(1), 12041 (2020)

    Google Scholar 

  31. Deng, B.L., Li, J., Tournat, V., Purohit, P.K., Bertoldi, K.: Dynamics of mechanical metamaterials: a framework to connect phonons, nonlinear periodic waves and solitons. J. Mech. Phys. Solids 147, 104233 (2021)

    MathSciNet  Google Scholar 

  32. Liang, X.D., Crosby, A.J.: Dynamic recoil in metamaterials with nonlinear interactions. J. Mech. Phys. Solids 162, 104834 (2022)

    MathSciNet  Google Scholar 

  33. Fang, X., Wen, J., Benisty, H., Yu, D.: Ultrabroad acoustical limiting in nonlinear metamaterials due to adaptive-broadening band-gap effect. Phys. Rev. B 101(10), 104304 (2020)

    Google Scholar 

  34. Allein, F., Tournat, V., Gusev, V., Theocharis, G.: Linear and nonlinear elastic waves in magnetogranular chains. Phys. Rev. Appl. 13(2), 024023 (2020)

    Google Scholar 

  35. Frandsen, N.M.M., Jensen, J.S.: Modal interaction and higher harmonic generation in a weakly nonlinear, periodic mass-spring chain. Wave Motion 68, 149–161 (2017)

    MathSciNet  MATH  Google Scholar 

  36. Guo, X., Gusev, V.E., Bertoldi, K., Tournat, V.: Manipulating acoustic wave reflection by a nonlinear elastic metasurface. J. Appl. Phys. 123(12), 124901 (2018)

    Google Scholar 

  37. Jiao, W., Gonella, S.: Mechanics of inter-modal tunneling in nonlinear waveguides. J. Mech. Phys. Solids 111, 1–17 (2018)

    MathSciNet  MATH  Google Scholar 

  38. Jiao, W., Gonella, S.: Doubly nonlinear waveguides with self-switching functionality selection capabilities. Phys. Rev. E 99(4), 042206 (2019)

    Google Scholar 

  39. Fronk, M.D., Leamy, M.J.: Isolated frequencies at which nonlinear materials behave linearly. Phys. Rev. E 100(5), 051002 (2019)

    Google Scholar 

  40. Lydon, J., Theocharis, G., Daraio, C.: Nonlinear resonances and energy transfer in finite granular chains. Phys. Rev. E 91(2), 023208 (2015)

    Google Scholar 

  41. Silva, P.B., Leamy, M.J., Geers, M.G., Kouznetsova, V.G.: Emergent subharmonic band gaps in nonlinear locally resonant metamaterials induced by autoparametric resonance. Phys. Rev. E 99(6), 063003 (2019)

    Google Scholar 

  42. Manimala, J.M., Sun, C.T.: Numerical investigation of amplitude-dependent dynamic response in acoustic metamaterials with nonlinear oscillators. J. Acoust. Soc. Am. 139(6), 3365 (2016)

    Google Scholar 

  43. Fiore, S., Finocchio, G., Zivieri, R., Chiappini, M., Garescì, F.: Wave amplitude decay driven by anharmonic potential in nonlinear mass-in-mass systems. Appl. Phys. Lett. 117(12), 124101 (2020)

    Google Scholar 

  44. Bae, M.H., Oh, J.H.: Amplitude-induced bandgap: new type of bandgap for nonlinear elastic metamaterials. J. Mech. Phys. Solids 139, 103930 (2020)

    MathSciNet  Google Scholar 

  45. Li, Z.N., Wang, Y.Z., Wang, Y.S.: Nonreciprocal phenomenon in nonlinear elastic wave metamaterials with continuous properties. Int. J. Solids Struct. 150, 125–134 (2018)

    Google Scholar 

  46. Fang, L.Z., Darabi, A., Mojahed, A., Vakakis, A.F., Leamy, M.J.: Broadband non-reciprocity with robust signal integrity in a triangle-shaped nonlinear 1D metamaterial. Nonlinear Dyn. 100(1), 1–13 (2020)

    Google Scholar 

  47. Li, Z.N., Wang, Y.Z., Wang, Y.S.: Tunable mechanical diode of nonlinear elastic metamaterials induced by imperfect interface. Proc. R. Soci. A Math. Phys. Eng. Sci. 477(2245), 20200357 (2021)

    MathSciNet  Google Scholar 

  48. Sheng, P., Fang, X., Wen, J.H., Yu, D.L.: Vibration properties and optimized design of a nonlinear acoustic metamaterial beam. J. Sound Vib. 492(3), 115739 (2021)

    Google Scholar 

  49. Lu, Z.Q., Zhao, L., Ding, H., Chen, L.Q.: A dual-functional metamaterial for integrated vibration isolation and energy harvesting. J. Sound Vib. 509(6), 116251 (2021)

    Google Scholar 

  50. Zhang, X., Yu, H., He, Z., Huang, G., Wang, G.: A metamaterial beam with inverse nonlinearity for broadband micro-vibration attenuation. Mech. Syst. Signal Process. 159(13), 107826 (2021)

    Google Scholar 

  51. Bae, M.H., Oh, J.H.: Nonlinear elastic metamaterial for tunable bandgap at quasi-static frequency. Mech. Syst. Signal Process. 170(1), 108832 (2022)

    Google Scholar 

  52. Narisetti, R.K., Leamy, M.J., Ruzzene, M.: A Perturbation approach for predicting wave propagation in one-dimensional nonlinear periodic structures. J. Vib. Acoust. Trans ASME 132(3), 031001 (2010)

    Google Scholar 

  53. Fronk, M.D., Leamy, M.J.: Higher-order dispersion, stability, and waveform invariance in nonlinear monoatomic and diatomic systems. J. Vib. Acoust. 139(5), 051003 (2017)

    Google Scholar 

  54. Fang, L.Z., Leamy, M.J.: Perturbation analysis of nonlinear evanescent waves in a one-dimensional monatomic chain. Phys. Rev. E 105(1), 014203 (2022)

    MathSciNet  Google Scholar 

  55. Patil, G.U., Matlack, K.H.: Wave self-interactions in continuum phononic materials with periodic contact nonlinearity. Wave Motion 105, 102763 (2021)

    MathSciNet  MATH  Google Scholar 

  56. Manktelow, K.L., Leamy, M.J., Ruzzene, M.: Topology design and optimization of nonlinear periodic materials. J. Mech. Phys. Solids 61(12), 2433–2453 (2013)

    MathSciNet  MATH  Google Scholar 

  57. Behroua, R., Ghanema, M.A., Macnide, B.C., Verma, V., Alvey, R., Hong, J.H., Emery, A.F., Kim, H.A., Boechler, N.: Topology optimization of nonlinear periodically microstructured materials for tailored homogenized constitutive properties. Compos. Struct. 266, 113729 (2021)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Grant Numbers 11925205 and 51921003).

Author information

Authors and Affiliations

Authors

Contributions

KW contributed to methodology, formal analysis, investigation, and writing—original draft; HH contributed to methodology, conceptualization, writing—review and editing, supervision, and project administration; LW contributed to methodology, conceptualization, writing—review and editing, resources, and funding acquisition.

Corresponding author

Correspondence to Haiyan Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Detailed derivation of variables in Sect. 2.2

The intermediate variables in Eq. (12) are given as

$$ L_{11} = \frac{{\overline{v}_{1,s}^{(0)} }}{2}e^{{i\beta_{s} }} e^{i\omega t} + \varepsilon \left( {\frac{{\overline{v}_{1,s}^{(1)} }}{2}e^{{i\varphi_{s} }} e^{i\omega t} + \frac{{9\overline{v}_{3,s}^{(1)} }}{2}e^{{i\psi_{s} }} e^{i \cdot 3\omega t} } \right), $$
(A.1)
$$ L_{12} = \left( {\frac{{\overline{v}_{1,s}^{(0)} }}{2}e^{{i\beta_{s} }} - \frac{{\overline{u}_{1,s}^{(0)} }}{2}e^{{i\alpha_{s} }} } \right)e^{i\omega t} + \varepsilon \left[ {\left( {\frac{{\overline{v}_{1,s}^{(1)} }}{2}e^{{i\varphi_{s} }} - \frac{{\overline{u}_{1,s}^{(1)} }}{2}e^{{i\phi_{s} }} } \right)e^{i\omega t} + \left( {\frac{{\overline{v}_{3,s}^{(1)} }}{2}e^{{i\psi_{s} }} - \frac{{\overline{u}_{3,s}^{(1)} }}{2}e^{{i\theta_{s} }} } \right)e^{i \cdot 3\omega t} } \right], $$
(A.2)
$$ L_{13} = \left( {\frac{{\overline{v}_{1,s}^{(0)} }}{2}e^{{i\beta_{s} }} - \frac{{\overline{u}_{1,s}^{(0)} }}{2}e^{{i\alpha_{s} }} } \right)e^{i\omega t} + \varepsilon \left[ {\left( {\frac{{\overline{v}_{1,s}^{(1)} }}{2}e^{{i\varphi_{s} }} - \frac{{\overline{u}_{1,s}^{(1)} }}{2}e^{{i\phi_{s} }} } \right)e^{i\omega t} + 3\left( {\frac{{\overline{v}_{3,s}^{(1)} }}{2}e^{{i\psi_{s} }} - \frac{{\overline{u}_{3,s}^{(1)} }}{2}e^{{i\theta_{s} }} } \right)e^{i \cdot 3\omega t} } \right]. $$
(A.3)

The intermediate variables in Eq. (13) are given as

$$ L_{21} = \frac{{\overline{u}_{1,N + 1}^{(0)} }}{2}e^{{i\alpha_{N + 1} }} e^{i\omega t} + \varepsilon \left( {\frac{{\overline{u}_{1,N + 1}^{(1)} }}{2}e^{{i\phi_{N + 1} }} e^{i\omega t} + \frac{{9\overline{u}_{3,N + 1}^{(1)} }}{2}e^{{i\theta_{N + 1} }} e^{i \cdot 3\omega t} } \right), $$
(A.4)
$$ \begin{aligned} L_{22} = & \left( {\frac{{\overline{u}_{1,N + 1}^{(0)} }}{2}e^{{i\alpha_{N + 1} }} - \frac{{\overline{u}_{1,N}^{(0)} }}{2}e^{{i\alpha_{N} }} } \right)e^{i\omega t} \\ & + \varepsilon \left[ {\left( {\frac{{\overline{u}_{1,N + 1}^{(1)} }}{2}e^{{i\phi_{N + 1} }} - \frac{{\overline{u}_{1,N}^{(1)} }}{2}e^{{i\phi_{N} }} } \right)e^{i\omega t} + \left( {\frac{{\overline{u}_{3,N + 1}^{(1)} }}{2}e^{{i\theta_{N + 1} }} - \frac{{\overline{u}_{3,N}^{(1)} }}{2}e^{{i\theta_{N} }} } \right)e^{i \cdot 3\omega t} } \right], \\ \end{aligned} $$
(A.5)
$$ \begin{aligned} L_{23} = & \left( {\frac{{\overline{u}_{1,N + 1}^{(0)} }}{2}e^{{i\alpha_{N + 1} }} - \frac{{\overline{u}_{1,N}^{(0)} }}{2}e^{{i\alpha_{N} }} } \right)e^{i\omega t} \\ & + \varepsilon \left[ {\left( {\frac{{\overline{u}_{1,N + 1}^{(1)} }}{2}e^{{i\phi_{N + 1} }} - \frac{{\overline{u}_{1,N}^{(1)} }}{2}e^{{i\phi_{N} }} } \right)e^{i\omega t} + 3\left( {\frac{{\overline{u}_{3,N + 1}^{(1)} }}{2}e^{{i\theta_{N + 1} }} - \frac{{\overline{u}_{3,N}^{(1)} }}{2}e^{{i\theta_{N} }} } \right)e^{i \cdot 3\omega t} } \right]. \\ \end{aligned} $$
(A.6)

The intermediate variables in Eq. (14) are given as

$$ L_{31} = \frac{{\overline{u}_{1,s}^{(0)} }}{2}e^{{i\alpha_{s} }} e^{i\omega t} + \varepsilon \left( {\frac{{\overline{u}_{1,s}^{(1)} }}{2}e^{{i\phi_{s} }} e^{i\omega t} + \frac{{9\overline{u}_{3,s}^{(1)} }}{2}e^{{i\theta_{s} }} e^{i \cdot 3\omega t} } \right), $$
(A.7)
$$ L_{32} = \left( {\frac{{\overline{u}_{1,s}^{(0)} }}{2}e^{{i\alpha_{s} }} - \frac{{\overline{v}_{1,s}^{(0)} }}{2}e^{{i\beta_{s} }} } \right)e^{i\omega t} + \varepsilon \left[ {\left( {\frac{{\overline{u}_{1,s}^{(1)} }}{2}e^{{i\phi_{s} }} - \frac{{\overline{v}_{1,s}^{(1)} }}{2}e^{{i\varphi_{s} }} } \right)e^{i\omega t} + \left( {\frac{{\overline{u}_{3,s}^{(1)} }}{2}e^{{i\theta_{s} }} - \frac{{\overline{v}_{3,s}^{(1)} }}{2}e^{{i\psi_{s} }} } \right)e^{i \cdot 3\omega t} } \right], $$
(A.8)
$$ L_{33} = \left( {\frac{{\overline{u}_{1,s}^{(0)} }}{2}e^{{i\alpha_{s} }} - \frac{{\overline{v}_{1,s}^{(0)} }}{2}e^{{i\beta_{s} }} } \right)e^{i\omega t} + \varepsilon \left[ {\left( {\frac{{\overline{u}_{1,s}^{(1)} }}{2}e^{{i\phi_{s} }} - \frac{{\overline{v}_{1,s}^{(1)} }}{2}e^{{i\varphi_{s} }} } \right)e^{i\omega t} + 3\left( {\frac{{\overline{u}_{3,s}^{(1)} }}{2}e^{{i\theta_{s} }} - \frac{{\overline{v}_{3,s}^{(1)} }}{2}e^{{i\psi_{s} }} } \right)e^{i \cdot 3\omega t} } \right], $$
(A.9)
$$ \begin{aligned} L_{34} = & \left( {\overline{u}_{1,s}^{(0)} e^{{i\alpha_{s} }} - \frac{{\overline{u}_{1,s - 1}^{(0)} }}{2}e^{{i\alpha_{s - 1} }} - \frac{{\overline{u}_{1,s + 1}^{(0)} }}{2}e^{{i\alpha_{s + 1} }} } \right)e^{i\omega t} \\ & + \varepsilon \left[ {\left( {\overline{u}_{1,s}^{(1)} e^{{i\phi_{s} }} - \frac{{\overline{u}_{1,s - 1}^{(1)} }}{2}e^{{i\phi_{s - 1} }} - \frac{{\overline{u}_{1,s + 1}^{(1)} }}{2}e^{{i\phi_{s + 1} }} } \right)e^{i\omega t} + \left( {\overline{u}_{3,s}^{(1)} e^{{i\theta_{s} }} - \frac{{\overline{u}_{3,s - 1}^{(1)} }}{2}e^{{i\theta_{s - 1} }} - \frac{{\overline{u}_{3,s + 1}^{(1)} }}{2}e^{{i\theta_{s + 1} }} } \right)e^{i \cdot 3\omega t} } \right], \\ \end{aligned} $$
(A.10)
$$ \begin{aligned} L_{35} = & \left( {\overline{u}_{1,s}^{(0)} e^{{i\alpha_{s} }} - \frac{{\overline{u}_{1,s - 1}^{(0)} }}{2}e^{{i\alpha_{s - 1} }} - \frac{{\overline{u}_{1,s + 1}^{(0)} }}{2}e^{{i\alpha_{s + 1} }} } \right)e^{i\omega t} \\ & + \varepsilon \left[ {\left( {\overline{u}_{1,s}^{(1)} e^{{i\phi_{s} }} - \frac{{\overline{u}_{1,s - 1}^{(1)} }}{2}e^{{i\phi_{s - 1} }} - \frac{{\overline{u}_{1,s + 1}^{(1)} }}{2}e^{{i\phi_{s + 1} }} } \right)e^{i\omega t} + 3\left( {\overline{u}_{3,s}^{(1)} e^{{i\theta_{s} }} - \frac{{\overline{u}_{3,s - 1}^{(1)} }}{2}e^{{i\theta_{s - 1} }} - \frac{{\overline{u}_{3,s + 1}^{(1)} }}{2}e^{{i\theta_{s + 1} }} } \right)e^{i \cdot 3\omega t} } \right], \\ \end{aligned} $$
(A.11)
$$ \begin{aligned} L_{36} = & \left( {\frac{{\overline{u}_{1,s}^{(0)} }}{2}e^{{i\alpha_{s} }} - \frac{{\overline{u}_{1,s - 1}^{(0)} }}{2}e^{{i\alpha_{s - 1} }} } \right)e^{i\omega t} \\ & + \varepsilon \left[ {\left( {\frac{{\overline{u}_{1,s}^{(1)} }}{2}e^{{i\phi_{s} }} - \frac{{\overline{u}_{1,s - 1}^{(1)} }}{2}e^{{i\phi_{s - 1} }} } \right)e^{i\omega t} + \left( {\frac{{\overline{u}_{3,s}^{(1)} }}{2}e^{{i\theta_{s} }} - \frac{{\overline{u}_{3,s - 1}^{(1)} }}{2}e^{{i\theta_{s - 1} }} } \right)e^{i \cdot 3\omega t} } \right], \\ \end{aligned} $$
(A.12)
$$ \begin{aligned} L_{37} = & \left( {\frac{{\overline{u}_{1,s}^{(0)} }}{2}e^{{i\alpha_{s} }} - \frac{{\overline{u}_{1,s + 1}^{(0)} }}{2}e^{{i\alpha_{s + 1} }} } \right)e^{i\omega t} \\ & + \varepsilon \left[ {\left( {\frac{{\overline{u}_{1,s}^{(1)} }}{2}e^{{i\phi_{s} }} - \frac{{\overline{u}_{1,s + 1}^{(1)} }}{2}e^{{i\phi_{s + 1} }} } \right)e^{i\omega t} + \left( {\frac{{\overline{u}_{3,s}^{(1)} }}{2}e^{{i\theta_{s} }} - \frac{{\overline{u}_{3,s + 1}^{(1)} }}{2}e^{{i\theta_{s + 1} }} } \right)e^{i \cdot 3\omega t} } \right]. \\ \end{aligned} $$
(A.13)

Appendix B: Fitting curves of third harmonic amplitude with respect to the excitation amplitude \(a_{0}\).

Since it is reasonable to recognize the relationship between \(3\omega\) amplitude and excitation amplitude \(a_{0}\) as a cubic polynomial by expanding Eq. (34) in the analysis, this appendix presents the fitting curves of higher harmonic responses in the numerical computation. The coefficients of fitting cubic polynomial denote as \(\left[ {\begin{array}{*{20}c} {B_{0} } & {B_{1} } & {B_{2} } & {B_{3} } \\ \end{array} } \right]\), with the subscript standing for the order of each term in the polynomial. For simplicity, the selection of system parameters remains the same in Table 1 while the vector of inner mass ratios in the aperiodic system is identical to that in Table 2. The excitation frequency is selected as 15 Hz and small parameter is given as \(\varepsilon = 0.1\). Figure 

Fig. 14
figure 14

Fitting curves of third harmonic amplitude with respect to the excitation amplitude \(a_{0}\) in the case of: a aperiodicity; b periodicity and c a single cell

14a presents the fitting curve of data with R-squared almost equal to 1, representing the good performance of cubic polynomial fitting. Table

Table 6 Polynomial coefficients of fitting cubic curves for different types of system

6 shows the corresponding polynomial coefficients, predicting the rapid growing of third harmonics with an increase of excitation amplitude \(a_{0}\).

In addition, this appendix also carries out the fitting on the data of periodic system and single cell, as shown in Fig. 14b and c. The periodic inner mass is selected based on the equality of gross inner masses in comparison to the aperiodic system, as shown in Table 6. The good results of polynomial fitting validate the similar relationship between \(3\omega\) amplitude and excitation amplitude \(a_{0}\) for the periodic system as well as the single cell when introducing cubic nonlinearity. However, the differences of the obtained polynomial coefficients in three example cases confirm the influence of unit-cell arrangements on the higher harmonics, especially when increasing input amplitude to a larger extent. In that case, the value of \(B_{3}\) dominates the amplitude of third harmonics, but would not be considered in the current work due to strong nonlinearity.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, K., Hu, H. & Wang, L. Nonlinear elastic waves in a chain type of metastructure: theoretical analysis and parametric optimization. Nonlinear Dyn 111, 11729–11751 (2023). https://doi.org/10.1007/s11071-023-08413-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08413-x

Keywords

Navigation