Skip to main content
Log in

Analytical investigation on piezoelectric shunting circuit for resonance suppression of the nonlinear vibration system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Piezoelectric shunting vibration absorber (PSVA) has attracted considerable attention in recent years. Nonlinearity widely exists in practice although a linear host system is the original design intention. What would happen when the predesigned PSVA under the linear host system assumption is applied to those nonlinear vibration systems? To address this issue, a nonlinear host system with a PSVA is constructed. The nonlinear responses of the electromechanical-coupled system are obtained by using the incremental harmonic balance method. Semi-analytical solutions demonstrate that the predesigned shunting circuit under linear host system assumption does not only work effectively but also makes the stability of the host system worse. To suppress the resonant peak of the host system efficiently, the particle swarm algorithm is applied to determine the proper shunting circuit of the PSVA. The performances of the proper PSVA, such as the suppression effects on the resonant peak, and its influence on the stability of the host system are investigated by numerical examples. Together with the parametric analysis, the tuning rule of the shunting circuit is given which can be the guide in the practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Baker, J.W.: Measuring bias in structural response caused by ground motion scaling. In: Pacific Conference Earthquake Engineering 1–6 (2007). https://doi.org/10.1002/eqe

  2. Tait, M.J., Isyumov, N., El Damatty, A.A.: Effectiveness of a 2D TLD and its numerical modeling. J. Struct. Eng. 133, 251–263 (2007). https://doi.org/10.1061/(ASCE)0733-9445(2007)133:2(251)

    Article  Google Scholar 

  3. Li, G., Chen, Y., Chen, W., Liu, J., He, H.: Local resonance – Helmholtz lattices with simultaneous solid-borne elastic waves and air-borne sound waves attenuation performance. Appl. Acoust. 186, 108450 (2022). https://doi.org/10.1016/j.apacoust.2021.108450

    Article  Google Scholar 

  4. Preumont, A.: Mechatronics: Dynamics of Electromechanical and Piezoelectric Systems. In: Solid Mechanics and Its Applications. Springer, The Netherlands (2006)

    MATH  Google Scholar 

  5. Maurya, D., Peddigari, M., Kang, M.G., Geng, L.D., Sharpes, N., Annapureddy, V., Palneedi, H., Sriramdas, R., Yan, Y., Song, H.C., Wang, Y.U., Ryu, J., Priya, S.: Lead-free piezoelectric materials and composites for high power density energy harvesting. J. Mater. Res. 33, 2235–2263 (2018). https://doi.org/10.1557/jmr.2018.172

    Article  Google Scholar 

  6. Bachmann, F., De Oliveira, R., Sigg, A., Schnyder, V., Delpero, T., Jaehne, R., Bergamini, A., Michaud, V., Ermanni, P.: Passive damping of composite blades using embedded piezoelectric modules or shape memory alloy wires: a comparative study. Smart Mater. Struct. (2012). https://doi.org/10.1088/0964-1726/21/7/075027

    Article  Google Scholar 

  7. de Sousa, V.C., Silva, T.M.P., Junior, C.D.M.: Aeroelastic flutter enhancement by exploiting the combined use of shape memory alloys and nonlinear piezoelectric circuits. J. Sound Vibr. 407, 46–62 (2017). https://doi.org/10.1016/j.jsv.2017.06.034

    Article  Google Scholar 

  8. Bisegna, P., Caruso, G.: Optimization of a passive vibration control scheme acting on a bladed rotor using an homogenized model. Struct. Multidiscip. Optim. 39, 625–636 (2009). https://doi.org/10.1007/s00158-009-0375-3

    Article  MathSciNet  MATH  Google Scholar 

  9. Tan, X., He, J., Xi, C., Deng, X., Xi, X., Chen, W., He, H.: Dynamic modeling for rotor-bearing system with electromechanically coupled boundary conditions. Appl. Math. Model. 91, 280–296 (2021). https://doi.org/10.1016/j.apm.2020.09.042

    Article  MathSciNet  MATH  Google Scholar 

  10. Casagrande, D., Gardonio, P., Zilletti, M.: Smart panel with time-varying shunted piezoelectric patch absorbers for broadband vibration control. J. Sound Vib. 400, 288–304 (2017). https://doi.org/10.1016/j.jsv.2017.04.012

    Article  Google Scholar 

  11. Flores Parra, E.A., Bergamini, A., Lossouarn, B., Van Damme, B., Cenedese, M., Ermanni, P.: Bandgap control with local and interconnected LC piezoelectric shunts. Appl. Phys. Lett. 111, 111902 (2017). https://doi.org/10.1063/1.4994779

    Article  Google Scholar 

  12. Pohl, M.: An adaptive negative capacitance circuit for enhanced performance and robustness of piezoelectric shunt damping. J. Intell. Mater. Syst. Struct. 28, 2633–2650 (2017). https://doi.org/10.1177/1045389X17698244

    Article  Google Scholar 

  13. Muthalif, A.G.A., Wahid, A.N.: Optimal piezoelectric shunt dampers for non-deterministic substructure vibration control: estimation and parametric investigation. Sci. Rep. 11, 1–15 (2021). https://doi.org/10.1038/s41598-021-84097-w

    Article  Google Scholar 

  14. Marakakis, K., Tairidis, G.K., Koutsianitis, P., Stavroulakis, G.E.: Shunt piezoelectric systems for noise and vibration control: a review. Front. Built Environ. (2019). https://doi.org/10.3389/fbuil.2019.00064

    Article  Google Scholar 

  15. Gripp, J.A.B., Rade, D.A.: Vibration and noise control using shunted piezoelectric transducers: a review. Mech. Syst. Signal Process. 112, 359–383 (2018). https://doi.org/10.1016/j.ymssp.2018.04.041

    Article  Google Scholar 

  16. Guillot, V., Ture Savadkoohi, A., Lamarque, C.H.: Analysis of a reduced-order nonlinear model of a multi-physics beam. Nonlinear Dyn. (2019). https://doi.org/10.1007/s11071-019-05054-x

    Article  MATH  Google Scholar 

  17. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Global nonlinear distributed-parameter model of parametrically excited piezoelectric energy harvesters. Nonlinear Dyn. 67, 1147–1160 (2012). https://doi.org/10.1007/s11071-011-0059-6

    Article  MathSciNet  MATH  Google Scholar 

  18. Mam, K., Peigney, M., Siegert, D.: Finite strain effects in piezoelectric energy harvesters under direct and parametric excitations. J. Sound Vibr. 389, 411–437 (2017). https://doi.org/10.1016/j.jsv.2016.11.022

    Article  Google Scholar 

  19. Soltani, P., Kerschen, G., Tondreau, G., Deraemaeker, A.: Piezoelectric vibration damping using resonant shunt circuits: an exact solution. Smart Mater. Struct. (2014). https://doi.org/10.1088/0964-1726/23/12/125014

    Article  Google Scholar 

  20. Karličić, D., Cajić, M., Adhikari, S.: Dynamic stability of a nonlinear multiple-nanobeam system. Nonlinear Dyn. 93, 1495–1517 (2018). https://doi.org/10.1007/s11071-018-4273-3

    Article  MATH  Google Scholar 

  21. Raghothama, A., Narayanan, S.: Periodic response and chaos in nonlinear systems with parametric excitation and time delay. Nonlinear Dyn. (2002). https://doi.org/10.1023/A:1015207726565

    Article  MathSciNet  MATH  Google Scholar 

  22. Ahmadian, H., Jalali, H.: Generic element formulation for modelling bolted lap joints. Mech. Syst. Signal Process. 21, 2318–2334 (2007). https://doi.org/10.1016/j.ymssp.2006.10.006

    Article  Google Scholar 

  23. Wang, S., Hua, L., Yang, C., Han, X., Su, Z.: Applications of incremental harmonic balance method combined with equivalent piecewise linearization on vibrations of nonlinear stiffness systems. J. Sound Vibr. 441, 111–125 (2019). https://doi.org/10.1016/j.jsv.2018.10.039

    Article  Google Scholar 

  24. Mohammad Nezhad, A., Aliakbari Shandiz, R., Eshraghniaye Jahromi, A.: A particle swarm-BFGS algorithm for nonlinear programming problems. Comput. Oper. Res. 40, 963–972 (2013). https://doi.org/10.1016/j.cor.2012.11.008

    Article  MathSciNet  MATH  Google Scholar 

  25. Majhi, B., Panda, G.: Development of efficient identification scheme for nonlinear dynamic systems using swarm intelligence techniques. Expert Syst. Appl. 37, 556–566 (2010). https://doi.org/10.1016/j.eswa.2009.05.036

    Article  Google Scholar 

  26. Xie, Y., Fu, J.L., Chen, B.Y.: Parameter identification of hysteresis nonlinear dynamic model for piezoelectric positioning system based on the improved particle swarm optimization method. Adv. Mech. Eng. (2017). https://doi.org/10.1177/1687814017702813

    Article  Google Scholar 

Download references

Acknowledgements

The work was funded by National Natural Science Foundation of China (Grant No. 12072153), the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures (Nanjing University of Aeronautics and astronautics) Grant No. MCMS-I-0118G01, and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Funding

National Natural Science Foundation of China, 12072153, Huan He.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan He.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Tan, X., An, J. et al. Analytical investigation on piezoelectric shunting circuit for resonance suppression of the nonlinear vibration system. Nonlinear Dyn 111, 7083–7103 (2023). https://doi.org/10.1007/s11071-022-08213-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08213-9

Keywords

Navigation