Skip to main content
Log in

Localized solutions of inhomogeneous saturable nonlinear Schrödinger equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we obtain localized solutions of a nonhomogeneous saturable nonlinear system well described by a nonautonomous nonlinear Schrödinger equation. The nonlinearity under consideration disappears in the limiting case of zero saturation, causing the system to be modeled by a linear Schrödinger equation. We employ the similarity transformation technique to convert the nonautonomous equation into an autonomous one. The modulation patterns, generally applied by inhomogeneities of linear and nonlinear coefficients, need to satisfy a set of conditional equations obtained during the similarity transformation. Finally, we consider different modulation patterns that change the position of the center of mass and/or the width of the localized solutions and investigate their linear stability, in which we obtain some examples that can be stable, depending on the specific values of the system parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Malomed, B.A.: Soliton Management in Periodic Systems. Springer, Berlin (2006)

    MATH  Google Scholar 

  2. Avelar, A.T., Bazeia, D., Cardoso, W.B.: Modulation of breathers in the three-dimensional nonlinear Gross–Pitaevskii equation. Phys. Rev. E 82(5), 057601 (2010). https://doi.org/10.1103/PhysRevE.82.057601

    Article  Google Scholar 

  3. Cardoso, W.B., Avelar, A.T., Bazeia, D.: Modulation of breathers in cigar-shaped Bose–Einstein condensates. Phys. Lett. A 374(26), 2640–2645 (2010). https://doi.org/10.1016/j.physleta.2010.04.050

    Article  MATH  Google Scholar 

  4. Cardoso, W.B., Avelar, A.T., Bazeia, D., Hussein, M.S.: Solitons of two-component Bose–Einstein condensates modulated in space and time. Phys. Lett. A 374(23), 2356–2360 (2010). https://doi.org/10.1016/j.physleta.2010.03.065

    Article  MATH  Google Scholar 

  5. Cardoso, W.B., Avelar, A.T., Bazeia, D.: Modulation of localized solutions in a system of two coupled nonlinear Schrödinger equations. Phys. Rev. E 86(2), 027601 (2012). https://doi.org/10.1103/PhysRevE.86.027601

    Article  Google Scholar 

  6. Yomba, E.: Traveling-waves and solitons in a generalized time-variable coefficients nonlinear Schrödinger equation with higher-order terms. Phys. Lett. A 377(3–4), 167–175 (2013)

    Article  MATH  Google Scholar 

  7. Cardoso, W.B., Zeng, J., Avelar, A.T., Bazeia, D., Malomed, B.A.: Bright solitons from the nonpolynomial Schrödinger equation with inhomogeneous defocusing nonlinearities. Phys. Rev. E 88(2), 025201 (2013). https://doi.org/10.1103/PhysRevE.88.025201

    Article  Google Scholar 

  8. Calaça, L., Avelar, A.T., Bazeia, D., Cardoso, W.B.: Modulation of localized solutions for the Schrödinger equation with logarithm nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 19(9), 2928–2934 (2014). https://doi.org/10.1016/j.cnsns.2014.02.002

    Article  MATH  Google Scholar 

  9. Loomba, S., Pal, R., Kumar, C.N.: Bright solitons of the nonautonomous cubic-quintic nonlinear Schrödinger equation with sign-reversal nonlinearity. Phys. Rev. A 92(3), 033811 (2015). https://doi.org/10.1103/PhysRevA.92.033811

    Article  Google Scholar 

  10. Soloman Raju, T.: Dynamics of self-similar waves in asymmetric twin-core fibers with Airy–Bessel modulated nonlinearity. Opt. Commun. 346, 74–79 (2015)

    Article  Google Scholar 

  11. De Kumar, K., Goyal, A., Raju, T.S., Kumar, C., Panigrahi, P.K.: Riccati parameterized self-similar waves in two-dimensional graded-index waveguide. Opt. Commun. 341, 15–21 (2015)

    Article  Google Scholar 

  12. Yang, Y., Yan, Z., Mihalache, D.: Controlling temporal solitary waves in the generalized inhomogeneous coupled nonlinear Schrödinger equations with varying source terms. J. Math. Phys. 56(5), 053508 (2015). https://doi.org/10.1063/1.4921641

    Article  MATH  Google Scholar 

  13. Meza, L.E.A., Dutra, A.D.S., Hott, M.B., Roy, P.: Wide localized solutions of the parity-time-symmetric nonautonomous nonlinear Schrödinger equation. Phys. Rev. E 91(1), 013205 (2015). https://doi.org/10.1103/PhysRevE.91.013205

    Article  Google Scholar 

  14. Pal, R., Goyal, A., Loomba, S., Raju, T.S., Kumar, C.N.: Compression of optical similaritons induced by cubic–quintic nonlinear media in a graded-index waveguide. J. Nonlinear Opt. Phys. Mater. 25(03), 1650033 (2016). https://doi.org/10.1142/S0218863516500338

    Article  Google Scholar 

  15. Xu, S.L., Cheng, J.X., Belić, M.R., Hu, Z.L., Zhao, Y.: Dynamics of nonlinear waves in two-dimensional cubic–quintic nonlinear Schrödinger equation with spatially modulated nonlinearities and potentials. Opt. Express 24(9), 10066 (2016)

    Article  Google Scholar 

  16. Temgoua, D.D.E., Kofane, T.C.: Influence of optical activity on rogue waves propagating in chiral optical fibers. Phys. Rev. E 93(6), 62223 (2016). https://doi.org/10.1103/PhysRevE.93.062223

    Article  Google Scholar 

  17. Calaça, L., Cardoso, W.B.: Modulation of localized solutions in an inhomogeneous saturable nonlinear Schrödinger equation. Opt. Quantum Electron. 49(11), 379 (2017). https://doi.org/10.1007/s11082-017-1214-1

    Article  Google Scholar 

  18. Cardoso, W.B., Salasnich, L., Malomed, B.A.: Localized solutions of Lugiato–Lefever equations with focused pump. Sci. Rep. 7(1), 16876 (2017). https://doi.org/10.1038/s41598-017-16981-3

    Article  Google Scholar 

  19. Temgoua, D.D.E., Tchokonte, M.B.T., Kofane, T.C.: Combined effects of nonparaxiality, optical activity, and walk-off on rogue wave propagation in optical fibers filled with chiral materials. Phys. Rev. E 97(4), 42205 (2018). https://doi.org/10.1103/PhysRevE.97.042205

    Article  Google Scholar 

  20. Wang, C.Y.: The analytic solutions of Schrödinger equation with Cubic–Quintic nonlinearities. Results Phys. 10, 150–154 (2018)

    Article  Google Scholar 

  21. Calaça, L., Avelar, A.T., Malomed, B.A., Cardoso, W.B.: Influence of pseudo-stimulated-Raman-scattering on the modulational instability in an inhomogeneous nonlinear medium. Eur. Phys. J. Spec. Top. 227(5–6), 551–561 (2018). https://doi.org/10.1140/epjst/e2018-00118-5

    Article  Google Scholar 

  22. Xin, L., Kong, Y., Han, L.: Solutions of solitary-wave for the variable-coefficient nonlinear Schrödinger equation with two power-law nonlinear terms. Int. J. Mod. Phys. B 32(28), 1850310 (2018). https://doi.org/10.1142/S0217979218503101

    Article  MATH  Google Scholar 

  23. Cardoso, W.B., Couto, H.L.C., Avelar, A.T., Bazeia, D.: Modulation of localized solutions in quadratic–cubic nonlinear Schrödinger equation with inhomogeneous coefficients. Commun. Nonlinear Sci. Numer. Simul. 48, 474–483 (2017)

    Article  MATH  Google Scholar 

  24. Saravanan, M., Cardoso, W.B.: Parametrically driven localized magnetic excitations with spatial inhomogeneity. Commun. Nonlinear Sci. Numer. Simul. 69, 176–186 (2019)

    Article  MATH  Google Scholar 

  25. Pal, R., Kaur, H., Goyal, A., Kumar, C.N.: Dynamics of Jacobi elliptic and soliton solutions for the modified quadratic–cubic nonlinear Schrödinger equation. J. Mod. Opt. 66(5), 571–579 (2019). https://doi.org/10.1080/09500340.2018.1530806

    Article  Google Scholar 

  26. Li, R., Yong, X., Chen, Y., Huang, Y.: Equivalence transformations and differential invariants of a generalized cubic–quintic nonlinear Schrödinger equation with variable coefficients. Nonlinear Dyn. 102(1), 339–348 (2020). https://doi.org/10.1007/s11071-020-05940-9

    Article  Google Scholar 

  27. Pathania, S., Kaur, H., Goyal, A., Kumar, C.: Controlled self-similar matter waves in PT-symmetric waveguide. Phys. Lett. A 384(24), 126574 (2020)

    Article  MATH  Google Scholar 

  28. Cardoso, W.B., Avelar, A.T., Bazeia, D.: Propagation of solitons in quasi-periodic nonlinear coupled waveguides. Braz. J. Phys. 51(2), 151–156 (2021). https://doi.org/10.1007/s13538-020-00836-w

    Article  Google Scholar 

  29. Cardoso, W.B., Avelar, A.T., Bazeia, D.: Effects of chaotic perturbations on a nonlinear system undergoing two-soliton collisions. Nonlinear Dyn. 106(4), 3469–3477 (2021). https://doi.org/10.1007/s11071-021-06962-7

    Article  Google Scholar 

  30. dos Santos, R.D., Cardoso, W.B.: Modulation of localized solutions of an inhomogeneous cigar-shaped superfluid fermion gas. Nonlinear Dyn. 107(1), 1205–1214 (2022). https://doi.org/10.1007/s11071-021-07090-y

    Article  Google Scholar 

  31. Djoptoussia, C., Tiofack, C.G.L., Alim, Mohamadou, A., Kofané, T.C.: Ultrashort self-similar periodic waves and similaritons in an inhomogeneous optical medium with an external source and modulated coefficients. Nonlinear Dyn. 107(4), 3833–3846 (2022). https://doi.org/10.1007/s11071-021-07173-w

    Article  Google Scholar 

  32. Dalfovo, F., Giorgini, S., Pitaevskii, L.P., Stringari, S.: Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71(3), 463–512 (1999). https://doi.org/10.1103/RevModPhys.71.463

    Article  Google Scholar 

  33. Inouye, S., Andrews, M.R., Stenger, J., Miesner, H.J., Stamper-Kurn, D.M., Ketterle, W.: Observation of Feshbach resonances in a Bose–Einstein condensate. Nature 392(6672), 151–154 (1998). https://doi.org/10.1038/32354

    Article  Google Scholar 

  34. Theis, M., Thalhammer, G., Winkler, K., Hellwig, M., Ruff, G., Grimm, R., Denschlag, J.H.: Tuning the scattering length with an optically induced Feshbach resonance. Phys. Rev. Lett. 93(12), 123001 (2004). https://doi.org/10.1103/PhysRevLett.93.123001

    Article  Google Scholar 

  35. Abdullaev, F.K., Kamchatnov, A.M., Konotop, V.V., Brazhnyi, V.A.: Adiabatic dynamics of periodic waves in Bose–Einstein condensates with time dependent atomic scattering length. Phys. Rev. Lett. 90(23), 230402 (2003). https://doi.org/10.1103/PhysRevLett.90.230402

    Article  Google Scholar 

  36. Saito, H., Ueda, M.: Dynamically stabilized bright solitons in a two-dimensional Bose–Einstein condensate. Phys. Rev. Lett. 90(4), 040403 (2003). https://doi.org/10.1103/PhysRevLett.90.040403

    Article  Google Scholar 

  37. Bagnato, V.S., Frantzeskakis, D.J., Kevrekidis, P.G., Malomed, B.A., Mihalache, D.: Bose–Einstein condensation: twenty years after. Rom. Rep. Phys. 67, 5–50 (2015). arXiv:1502.06328

    Google Scholar 

  38. Kengne, E., Liu, W.M., Malomed, B.A.: Spatiotemporal engineering of matter-wave solitons in Bose–Einstein condensates. Phys. Rep. 899, 1–62 (2021)

    Article  MATH  Google Scholar 

  39. Rodas-Verde, M.I., Michinel, H., Pérez-García, V.M.: Controllable soliton emission from a Bose–Einstein condensate. Phys. Rev. Lett. 95(15), 153903 (2005). https://doi.org/10.1103/PhysRevLett.95.153903’

    Article  Google Scholar 

  40. Sakaguchi, H., Malomed, B.A.: Matter-wave solitons in nonlinear optical lattices. Phys. Rev. E 72(4), 046610 (2005). https://doi.org/10.1103/PhysRevE.72.046610’

    Article  Google Scholar 

  41. Belmonte-Beitia, J., Pérez-García, V.M., Vekslerchik, V., Torres, P.J.: Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities. Phys. Rev. Lett. 98(6), 064102 (2007). https://doi.org/10.1103/PhysRevLett.98.064102

    Article  Google Scholar 

  42. Belmonte-Beitia, J., Pérez-García, V.M., Vekslerchik, V., Konotop, V.V.: Localized nonlinear waves in systems with time- and space-modulated nonlinearities. Phys. Rev. Lett. 100(16), 164102 (2008). https://doi.org/10.1103/PhysRevLett.100.164102

    Article  Google Scholar 

  43. Cardoso, W.B., Avelar, A.T., Bazeia, D.: Bright and dark solitons in a periodically attractive and expulsive potential with nonlinearities modulated in space and time. Nonlinear Anal. Real World Appl. 11(5), 4269–4274 (2010)

    Article  MATH  Google Scholar 

  44. Avelar, A.T., Bazeia, D., Cardoso, W.B.: Solitons with cubic and quintic nonlinearities modulated in space and time. Phys. Rev. E 79(2), 025602 (2009). https://doi.org/10.1103/PhysRevE.79.025602

    Article  Google Scholar 

  45. Belmonte-Beitia, J., Calvo, G.F.: Exact solutions for the quintic nonlinear Schrödinger equation with time and space modulated nonlinearities and potentials. Phys. Lett. A 373(4), 448–453 (2009)

    Article  MATH  Google Scholar 

  46. Hasegawa, A., Tappert, F.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl. Phys. Lett. 23(3), 142–144 (1973). https://doi.org/10.1063/1.1654836

    Article  Google Scholar 

  47. Hasegawa, A., Tappert, F.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. II. Normal dispersion. Appl. Phys. Lett. 23(4), 171–172 (1973). https://doi.org/10.1063/1.1654847

    Article  Google Scholar 

  48. Haus, H.A., Wong, W.S.: Solitons in optical communications. Rev. Mod. Phys. 68(2), 423–444 (1996). https://doi.org/10.1103/RevModPhys.68.423

    Article  Google Scholar 

  49. Mihalache, D.: Localized structures in optical and matter-wave media: a selection of recent studies. Rom. Rep. Phys. 73, 403 (2021)

    Google Scholar 

  50. Kartashov, Y.V., Astrakharchik, G.E., Malomed, B.A., Torner, L.: Frontiers in multidimensional self-trapping of nonlinear fields and matter. Nat. Rev. Phys. 1(3), 185–197 (2019)

    Article  Google Scholar 

  51. Krolikowski, W., Luther-Davies, B.: Analytic solution for soliton propagation in a nonlinear saturable medium. Opt. Lett. 17(20), 1414 (1992)

    Article  Google Scholar 

  52. Segev, M., Valley, G.C., Crosignani, B., DiPorto, P., Yariv, A.: Steady-state spatial screening solitons in photorefractive materials with external applied field. Phys. Rev. Lett. 73(24), 3211–3214 (1994). https://doi.org/10.1103/PhysRevLett.73.3211

    Article  Google Scholar 

  53. Valley, G.C., Segev, M., Crosignani, B., Yariv, A., Fejer, M.M., Bashaw, M.C.: Dark and bright photovoltaic spatial solitons. Phys. Rev. A 50(6), R4457–R4460 (1994). https://doi.org/10.1103/PhysRevA.50.R4457

    Article  Google Scholar 

  54. Segev, M., Shih, Mf., Valley, G.C.: Photorefractive screening solitons of high and low intensity. J. Opt. Soc. Am. B 13(4), 706 (1996). https://doi.org/10.1364/JOSAB.13.000706

    Article  Google Scholar 

  55. Carvalho, M.I., Facão, M., Christodoulides, D.N.: Self-bending of dark and gray photorefractive solitons. Phys. Rev. E 76(1), 016602 (2007). https://doi.org/10.1103/PhysRevE.76.016602

    Article  Google Scholar 

  56. Christian, J.M., McDonald, G.S., Lundie, M.J., Kotsampaseris, A.: Relativistic and pseudorelativistic formulation of nonlinear envelope equations with spatiotemporal dispersion. II. Saturable systems. Phys. Rev. A 98(5), 053843 (2018). https://doi.org/10.1103/PhysRevA.98.053843

  57. Christodoulides, D.N., Carvalho, M.I.: Bright, dark, and gray spatial soliton states in photorefractive media. J. Opt. Soc. Am. B 12(9), 1628 (1995)

    Article  Google Scholar 

  58. Jasiński, J.: Bright solitons of generalized nonlinear Schrödinger equation. Opt. Commun. 172(1–6), 325–333 (1999)

    Article  Google Scholar 

  59. Calvo, G.F., Belmonte-Beitia, J., Pérez-García, V.M.: Exact bright and dark spatial soliton solutions in saturable nonlinear media. Chaos Solitons Fractals 41(4), 1791–1798 (2009)

    Article  MATH  Google Scholar 

  60. Wang, X., Wang, Z.Q.: Normalized multi-bump solutions for saturable Schrödinger equations. Adv. Nonlinear Anal. 9(1), 1259–1277 (2019). https://doi.org/10.1515/anona-2020-0054

    Article  MATH  Google Scholar 

  61. Lehrer, R., Soares, S.H.M.: Existence and concentration of positive solutions for a system of coupled saturable Schrödinger equations. Nonlinear Anal. 197, 111841 (2020)

    Article  MATH  Google Scholar 

  62. Kivshar, Y.S., Agrawal, G.: Optical Solitons: From Fibers to Photonic Crystals. Elsevier, Amsterdam https://books.google.com.br/books?id=zzWgibj4ypsC, (2003)

  63. Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press https://books.google.com.br/books?id=xNvw-GDVn84Chttps://books.google.com.br/books?id=b5S0JqHMoxAChttps://books.google.com.br/books?id=wjHP0oAVcScC, (2013)

  64. Yang, J.: Nonlinear waves in integrable and nonintegrable systems. Soc. Ind. Appl. Math. (2010). https://doi.org/10.1137/1.9780898719680

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Brazilian agencies CNPq (No. 306065/2019-3, No. 425718/2018-2, No. 312723/2018-0, No. 407469/2021-4, and Sisphoton Laboratory-MCTI No. 440225/2021-3), CAPES, and FAPEG (PRONEM Grant No. 201710267000540, PRONEX Grant No. 201710267000503). This work was also performed as part of the Brazilian National Institute of Science and Technology (INCT) for Quantum Information (Grant No. 465469/2014-0).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wesley B. Cardoso.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocha, M.R.d., Avelar, A.T. & Cardoso, W.B. Localized solutions of inhomogeneous saturable nonlinear Schrödinger equation. Nonlinear Dyn 111, 4769–4777 (2023). https://doi.org/10.1007/s11071-022-08104-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08104-z

Keywords

Navigation