Skip to main content
Log in

Study on multi-clearance nonlinear dynamic characteristics of herringbone gear transmission system under optimal 3d modification

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The tooth surface 3d modification technology is the most effective method to realize the reduction of vibration and noise of gear system (GS) by comprehensively considering tooth profile modification and axial modification. Moreover, the system nonlinear factors such as backlash and bearing clearance will make the motion of GS have complex variability. Therefore, we will combine 3d modification technology with contact performance and dynamic characteristics to optimize the meshing characteristics of herringbone gear pair through tooth contact analysis technology, loaded tooth contact analysis technology and antlion optimizer with error minimum amplitude as optimization objective, determine three nonlinear dynamic model of herringbone gear for numerical solution. Finally, this paper studies the influence of different system parameters on the system nonlinear dynamic characteristics under 3d modification and non-modification from both local vibration characteristics on the diagrams of time history, phase, spectrum and Poincare map and global vibration characteristics on the diagrams of system bifurcation and maximum Lyapunov exponent. The results show: After optimizing modification, the system vibration is obviously reduced. With the increase of input power, input speed, backlash and static transmission error (STE), the system has jump, while there is no jump with the change of bearing clearance and damping ratio. Compared with other parameters, the changes of input speed and STE make system have complex bifurcation characteristics. The 3d modification can eliminate the jump and make system motion more regular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig.21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Abbreviations

GS:

Gear system

TCA:

Tooth contact analysis

LTCA:

Loaded tooth contact analysis

GTE:

Geometric transmission error

LTE:

Loaded transmission error

ALO:

Antlion optimizer

STE:

Static transmission error

MLE:

Maximum Lyapunov exponent

RMS:

Root mean square

1 :

3D modified tooth surface

2 :

The theoretical involute tooth surface

u o, u p, u q and u a :

The involute expansion angles at tooth profile modification boundary line.

θ o, θ n, θ m and θ max :

The gear rotation angle for axial modification boundary line

y 1 and y 3 :

Maximum modification amount at root and top of tooth

y 2 and y 4 :

Modification length at root and top of tooth.

y 5 and y 6 :

Maximum modification amount of the lower and upper of tooth width.

z hf and z ha :

Modification lengths of the lower and upper of tooth width

y 7 :

The length without modification in axial.

δ n, δ m, δ p and δ q :

Modification amounts of the top, root, lower and upper of tooth

a ms :

Modification coefficient of tooth profile

u 1 :

Involute expansion angle of whole tooth profile

u 0, θ 0 :

Starting point of different modified areas

λ 0 :

The half angle of base circular groove

E 0 :

The center distance between grinding wheel and gear center

\(E^{\prime}_{0}\) :

Standard center distance

a mk :

Axial modification coefficient

θ 1 :

Gear rotation angle

S m :

The coordinate system fixed on gear mounting table

S 1 :

The coordinate system fixed on gear blank

S t :

The coordinate system fixed on grinding wheel

“ ± ” and “ ∓ ”:

The upper symbol indicates right tooth surface of the groove, and the lower symbol indicates the left tooth surface of the groove.

δ :

The axis non-parallelism error

ΔE :

Center distance error of driven gears

M :

Coordinate system transformation matrix

L :

The submatrix removing the last row and last column of M.

w ik :

Initial clearance of ellipse center point i before contact

w jk :

Tooth surface clearance at any point j before contact

p ik and p jk :

Unit normal load of contact point of the long axis of ellipse

d jk :

Tooth surface clearance after deformation at point j under load

[w]k :

Initial clearance of tooth surface before being loaded

[d]k :

Tooth surface clearance after being loaded.

[Z]:

Tooth rigid body displacement

[L]k [P]k :

Elastic deformation obtained by multiplying normal flexibility matrix and normal load

[p]:

The discrete point load

M :

Input torque

X j :

An artificial variable.

T :

Output torque

r b 2 :

Base radius of passive gear

α n :

Normal pressure angle

β :

The helix angle

ΔT e :

The normal loaded comprehensive deformation obtained by LTCA

Δδ :

The normal GTE obtained by TCA.

v s :

Speed difference of mesh-in point

δ s :

Maximum impact deformation

k s :

Meshing stiffness of mesh-in point

J 1 and J 2 :

Moment of inertia

e m :

The average value of errors of gear pair

e r :

Error amplitude of gear pair

f s 1(t) and f s 2(t):

The meshing impact excitation of left and right helical gear pairs of herringbone gear.

k 12 L(t) and k 12 R(t):

The normal time-varying meshing stiffness of left and right helical gear pairs of herringbone gear

c 12 L and c 12 R :

Normal meshing damping of left and right helical gear pairs of herringbone gear.

e 12 L(t) and e 12 R(t):

The STEs of left and right helical gear pairs of herringbone gear

2b 12 L and 2b 12 R :

The backlash between left and right helical gear pairs

2γ 1 L, 2γ 1 R,2γ 2 L and 2γ 2 R :

Each radial bearing clearance.

ζ :

The damping ratio

k m :

The average meshing stiffness

m 1 and m 2 :

The equivalent meshing mass of left and right helical gear pairs

M D, C D, K D, q and F D :

Mass matrix, damping matrix, stiffness matrix, displacement vector and force vector.

\({\overline{\mathbf{C}}}_{{\varvec{D}}}\) :

The dimensionless damping matrix

\({\overline{\mathbf{K}}}_{{\varvec{D}}}\) :

The dimensionless stiffness matrix

\(\overline{\user2{F}}_{{\varvec{D}}}\) :

The dimensionless load array.

I :

A unit matrix

P :

The input power

N :

The input speed

References

  1. Zhou, J.X., Sun, W.L.: Vibration and noise analysis of a herringbone gear transmission system. J. Vib. Shock 33, 66–71 (2014). https://doi.org/10.13465/j.cnki.jvs.2014.09.012

    Article  Google Scholar 

  2. Farshidianfar, A., Saghafi, A.: Identification and control of chaos in nonlinear gear dynamic systems using Melnikov analysis. Phys. Lett. A. 378, 3457–3463 (2014)

    Article  Google Scholar 

  3. Liu, H., Zhang, C., Xiang, C.L., et al.: Tooth profile modification based on lateral-torsional-rocking coupled nonlinear dynamic model of gear system. Mech. Mach. Theory. 105, 606–619 (2016). https://doi.org/10.1016/j.mechmachtheory.2016.07.013

    Article  Google Scholar 

  4. Alfonso, F.A., Ignacio, G.P.: Mathematical definition and computerized modeling of spherical involute and octoidal bevel gears generated by crown gear. Mech. Mach. Theory 106, 94–114 (2016). https://doi.org/10.1016/j.mechmachtheory.2016

    Article  Google Scholar 

  5. Yoshino, H., Ezoe, S., Muta, Y.: Studies on 3D tooth surface modification of helical gears (transmission error and tooth bearing of gears with modified tooth surface). Tran. Japan. Soci. Mech. Eng. Series. C. (1995);61,4457–4463. https://doi.org/10.1299/kikaic.61.4457

  6. Guan Y., Fa, N. Z., Yang, X., et al.: Tooth contact analysis of crown gear coupling with misalignment. Mech. Mach. Theory. 126:295–311(2018).https://doi.org/10.1016/j.mechmachtheory.2018.04.019

  7. Sun, X.X., Han, L., Wang, J.: Tooth modification and loaded tooth contact analysis of China bearing reducer. Part C: J. Mech. Eng. Sci. 233, 095440621985818 (2019)

    Google Scholar 

  8. Kahraman, A., Singh, R.: Non-linear dynamics of a geared rotor- bearing system with multiple clearances. J. Sound. Vib. 144, 469–506 (1991). https://doi.org/10.1016/0022-460X(91)90564-Z

    Article  Google Scholar 

  9. Blankenship, G.W., Kahraman, A.: Steady state forced response of a mechanical oscillator with combined parametric excitation and clearance type non-linearity. J. Sound. Vib. 185, 743–765 (1995). https://doi.org/10.1006/jsvi.1995.0416

    Article  MATH  Google Scholar 

  10. Kim, W., Hong, H.Y., Chung, J.: Dynamic analysis for a pair of spur gears with translational motion due to bearing deformation. J. Sound. Vib. 329, 4409–4421 (2010). https://doi.org/10.1016/j.jsv.2010.04.026

    Article  Google Scholar 

  11. Zhou, S., Jie, L., Li, C., et al.: Nonlinear behavior of a spur gear pair transmission system with backlash. J. Vibroeng. 16, 3850–3861 (2014)

    Google Scholar 

  12. Farshidianfar, A., Saghafi, A.: Global bifurcation and chaos analysis in nonlinear vibration of spur gear systems. Nonlinear. Dyn. 75, 783–806 (2014). https://doi.org/10.1007/s11071-013-1104-4

    Article  Google Scholar 

  13. Li, H.N., Chen, S.Y., Tang, J.Y., et al.: Nonlinear dynamic modeling and analysis of spur gear based on gear compatibility conditions. Mech. Mach. Theory. 171, 104767 (2022). https://doi.org/10.1016/j.mechmachtheory.2022.104767

    Article  Google Scholar 

  14. Shi, Z. H., Li, S.: Nonlinear dynamics of hypoid gear with coupled dynamic mesh stiffness. Mech. Mach. Theory. 168, 104589(2022)

  15. Gonzalez, M., Cuitiño, A.M.: A nonlocal contact formulation for confined granular systems. J. Mech. Phys. Solids. 60, 333–350 (2011). https://doi.org/10.1016/j.jmps.2011.10.004

    Article  MATH  Google Scholar 

  16. Wang, J. F., Shi, S. Q., Liu, Y. Z., et. al.: Multiscale simulation of temperature- and pressure-dependent nonlinear dynamics of PMMA/CNT composite plates. Nonlinear. Dynam. 65, 1–34 (2022). https://doi.org/10.1007/s11071-022-07511-6.

  17. Yadav, O.P., Balaga, S.R., Vyas, N.S.: Forced vibrations of a spring-dashpot mechanism with dry friction and backlash. Int. J. Nonlin. Mech. 124, 103500 (2020). https://doi.org/10.1016/j.ijnonlinmec.2020.103500

    Article  Google Scholar 

  18. Liu, Y. F., Qin, Z. Y., Chu, F. L.: Nonlinear forced vibrations of FGM sandwich cylindrical shells with porosities on an elastic substrate. Nonlinear. Dynam. 104, 1007–1021 (2021). 10. 1007 /s11071–021–06358–7

  19. Liu, Y.F., Qin, Z.Y., Chu, F.L.: Nonlinear forced vibrations of functionally graded piezoelectric cylindrical shells under electric-thermo-mechanical loads. Int. J. Mech. Sci. 201, 106474 (2021). https://doi.org/10.1016/j.ijmecsci.2021.106474

    Article  Google Scholar 

  20. Liu, Y.F., Qin, Z.Y., Chu, F.L.: Investigation of magneto- electro-thermo-mechanical loads on nonlinear forced vibrations of composite cylindrical shells. Commun. Nonlinear. Sci. Num. Simul. 107, 106146 (2022). https://doi.org/10.1016/j.cnsns.2021.106146

    Article  MATH  Google Scholar 

  21. Liu, Y.F., Qin, Z.Y., Chu, F.L.: Nonlinear forced vibrations of rotating cylindrical shells under multi- harmonic excitations in thermal environment. Nonlinear Dynam 108, 2977–2991 (2022). https://doi.org/10.1007/s11071-022-07449-9

    Article  Google Scholar 

  22. Wang, C.: Multi-objective optimal design of modification for helical gear. Mech. Sys. Sign. Proc. 157, 107762 (2021). https://doi.org/10.1016/j.ymssp.2021.107762

    Article  Google Scholar 

  23. Wang, X. G., Wang, Y. M., Liu, Y. X., et. al.: Multi-objective optimization modification of a tooth surface with minimum of flash temperature and vibration acceleration RMS. J. Mech. Sci. Tech.32,3097–3106(2018). https://doi.org/10.1007/s12206-018- 0612-z.

  24. Yang, J., Lin, T.J., et al.: Novel calculation method for dynamic excitation of modified double-helical gear transmission. Mech. Mach. Theory. 167, 104467 (2022). https://doi.org/10.1016/j.mechmachtheory.2021.104467

    Article  Google Scholar 

  25. Nishino., Takayuki Mesh exciting force of helical gears with 3-D tooth modification: tooth modification with low mesh exciting force in the wide load range. Trans. Japan Soc. Mech. Eng. 66, 3724–3732 (2000).

  26. Chang, J., Cai, W.: Bifurcation and chaos of gear-rotor-bearing system lubricated with couple-stress fluid. Nonlinear. Dyn. 79,749–763(2015).https://doi.org/10.1007/s11071-014-1701-x

  27. Li, T. J., Jin, G. H., Zhu, R. P., et al.: Nonlinear bending -torsional dynamics of geared rotor system supported by sliding bearing. J. Central. South. University. 49, 566–573 (2018). https://doi.org/10.11817/j.issn.1672-7207.2018.03.008

  28. Lin, H., Wang, S.M., Earl, H.D., et al.: Bifurcation observation of combining spiral gear transmission based on Parameter domain structure analysis. Math. Problems. Eng. 79, 1–13 (2016). https://doi.org/10.1155/2016/3738508

    Article  MATH  Google Scholar 

  29. Dorofeev, D. V., Kalinin, D. V., Kozarinov, E. V.: Designing gears with minimal effective transmission error by optimizing the parameters of tooth modification. J. Phys.ics: Conference Series.1891,012051(2021).https://doi.org/10.1088/1742-6596/1891/1/012051

  30. Jia, C., Fang, Z.D., Zhang, X.J., et al.: Optimal design and analysis of tooth modification for helical gears. J. Huazhong. University. Sci. Tech. 46, 66–71 (2018)

    Google Scholar 

  31. Xia, C, J., Wang, S. L., Sun, S. L., et al.: An identification method for crucial geometric errors of gear form grinding machine tools based on tooth surface posture error model. Mech. Mach. Theory, 138, 76–94 (2019)

  32. Zeng, H.H., Wang, L.M., Sun, H.M., et al.: Optimized design of straight bevel gear tooth root transition surface. Struct. Multidiscip. Opt. 65, 1–15 (2022). https://doi.org/10.1007/s00158-021-03146-0

    Article  Google Scholar 

  33. Seyedali, M.: The ant lion optimizer. Adv. Eng. Softw. 83, 80–98 (2015). https://doi.org/10.1016/j.advengsoft.2015.01.010

    Article  Google Scholar 

  34. Li, Z.B., Wang, S.M., Li, F., et al.: Research on multi-objective optimization design of meshing performance and dynamic characteristics of herringbone gear pair under 3D Modification. J. Mech. Des. 144, 103401 (2022). https://doi.org/10.1115/1.4054809

    Article  Google Scholar 

  35. Bu, Z.H., Liu, G., Wu, L.Y.: Research on the variation rules of meshing stiffness of the helical gear. J. Aero. Power. 25, 957–962 (2010)

    Google Scholar 

  36. Jia, C., Fang, Z. D., Yao, L., et al.: Tooth flank modification to reduce transmission error and mesh-in impact force in consideration of contact ratio for helical gears. P. I. Mech. Eng. C-J. Mech. Eng. Sci. 235, 203–210 (2020)

  37. Wang, X. G., An, S. Y., Wang, Y. M., et al.: Optimal analysis of gear modification fitting in alternating time domain aiming at minimizing meshing-in impact of teeth-pair contact interface. J Vibroeng, 3, 1293–1314 (2021)

  38. Li, R.F., Wang, J.J.: Gear System Dynamics-Vibration, Shock, Noise. Science Press, Beijing (1997).. (In Chinese)

    Google Scholar 

  39. Li, S., Kahraman, A.: A spur gear mesh interface damping model based on elastohydrodynamic contact behaviour. Int. J. Powertrains. 1, 4–21 (2011). https://doi.org/10.1504/IJPT.2011.041907

    Article  Google Scholar 

  40. Margielewicz, J., Gaska, D., Wojnar, G.: Numerical modelling of toothed gear dynamics. Sci. J. Silesian. Univ. Technol. Ser. Transp. 97, 105–115 (2017)

  41. Huang, K., Yi, Y., Xiong, Y.S., et al.: Nonlinear dynamics analysis of high contact ratio gears system with multiple clearances. J. Braz. Soc. Mech. Sci. 42, 1–16 (2020)

    Google Scholar 

  42. Xiang, L., Jia, Y., Hu, A.: Bifurcation and chaos analysis for multi-freedom gear-bearing system with time-varying stiffness. Appl. Math. Model. 40, 10506–10520 (2016). https://doi.org/10.1016/j.apm.2016.07.016

    Article  MATH  Google Scholar 

  43. Wang, J.Y., Guo, L.X., Wang, H.T.: Analysis of bifurcation and nonlinear control for chaos in gear transmission system. Res. J. Appl. Sci. Eng. Technol. 6, 1818–1824 (2013). https://doi.org/10.1007/s40299-013-0138-1

    Article  Google Scholar 

Download references

Acknowledgements

First and foremost, I would like to show my deepest gratitude to my supervisor, who has walked me through all the stages of the writing of this article. My sincere appreciation also goes to all my friends, especially my three lovely roommates, for their encouragement and support.

Funding

This study was supported by the Special Fund for Civil Machinery of China (Grant No. MJ-2016-D-28).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The overall idea and structure of the paper were determined by Professor [Sanmin Wang]. Material preparation, data collection Programming, and analysis were performed by [Zhibin Li], [Linlin Li], [Fei Li], [Linlin Liu] and [Haoran Zou]. The first draft of the manuscript was written by [Zhibin Li] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhibin Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Wang, S., Li, L. et al. Study on multi-clearance nonlinear dynamic characteristics of herringbone gear transmission system under optimal 3d modification. Nonlinear Dyn 111, 4237–4266 (2023). https://doi.org/10.1007/s11071-022-08083-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08083-1

Keywords

Navigation