Skip to main content
Log in

Firing mechanism based on single memristive neuron and double memristive coupled neurons

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Memristive neurons and memristive neural networks constructed based on memristors have important research significance for revealing the mystery of the brain. This paper proposes a compound hyperbolic tangent cubic nonlinear memristor, which has nonvolatile memory characteristics and local activity characteristics. In particular, the memristor also has three stable pinched hysteresis loops under different initial values. The memristor is applied to Fitzhugh–Nagumo neuron and Hindmarsh–Rose neuron to establish five different memristive neural models, and a series of firing dynamics analysis are carried out on them. At the same time, we not only discuss multiple firing patterns on a single memristive neuron and double memristive coupled neurons, but also compare which neuron and which coupled neural network the proposed memristor is more suitable for, which is a lack of comprehensive investigation in the published research. Furthermore, digital circuit experiment is performed on the FPGA development board to verify the firing mechanism of these memristive neural models, which has potential application value for some practical projects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Lin, H., Wang, C., Deng, Q., et al.: Review on chaotic dynamics of memristive neuron and neural network. Nonlinear Dyn. 106(1), 959–973 (2021)

    Google Scholar 

  2. Ma, M., Yang, Y., Qiu, Z., et al.: A locally active discrete memristor model and its application in a hyperchaotic map. Nonlinear Dyn. 107, 2935–2949 (2022)

    Google Scholar 

  3. Yu, F., Kong, X., Chen, H., et al.: A 6D fractional-order memristive hopfield neural network and its application in image encryption. Front. Phys. 10, 847385 (2022)

    Google Scholar 

  4. Yao, W., Wang, C., Sun, Y., et al.: Robust multimode function synchronization of memristive neural networks with parameter perturbations and time-varying delays. IEEE Trans. Syst. Man Cybern. Syst. 52(1), 260–274 (2022)

    Google Scholar 

  5. Yang, L., Wang, C.: Emotion model of associative memory possessing variable learning rates with time delay. Neurocomputing 460(14), 117–125 (2021)

    Google Scholar 

  6. Yu, F., Yu, Q., Chen, H., et al.: Dynamic analysis and audio encryption application in IoT of a multi-scroll fractional-order memristive hopfield neural network. Fractal Fract. 6(7), 370 (2022)

    Google Scholar 

  7. Wan, Q., Yan, Z., Li, F., et al.: Complex dynamics in a Hopfield neural network under electromagnetic induction and electromagnetic radiation. Chaos 32(7), 073107 (2022)

    MathSciNet  Google Scholar 

  8. Liao, M., Wang, C., Sun, Y., et al.: Memristor-based affective associative memory neural network circuit with emotional gradual processes. Neural Comput. Appl. 34, 13667–13682 (2022)

    Google Scholar 

  9. Chua, L.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Google Scholar 

  10. Strukov, D.B., Snider, G.S., Stewart, D.R., et al.: The missing memristor found. Nature 453(7191), 80–83 (2008)

    Google Scholar 

  11. Yu, F., Qian, S., Chen, X., et al.: A new 4D four-wing memristive hyperchaotic system: dynamical analysis, electronic circuit design, shape synchronization and secure communication. Int. J. Bifurcat. Chaos. 30(10), 2050147 (2020)

    MathSciNet  MATH  Google Scholar 

  12. Zhang, S., Li, C., Zheng, J., et al.: Generating any number of initial offset-boosted coexisting chua’s double-scroll attractors via piecewise-nonlinear memristor. IEEE Trans. Ind. Electron. 69(7), 7202–7212 (2022)

    Google Scholar 

  13. Xie, W., Wang, C., Lin, H.: A fractional-order multistable locally active memristor and its chaotic system with transient transition, state jump. Nonlinear Dyn. 104(4), 4523–4541 (2021)

    Google Scholar 

  14. Zhang, S., Li, C., Zheng, J., et al.: Generating any number of diversified hidden attractors via memristor coupling. IEEE Trans. Circuits Syst. I Regul. Pap. 68(12), 4945–4956 (2021)

    Google Scholar 

  15. Lin, H., Wang, C., Chen, C., et al.: Neural bursting and synchronization emulated by neural networks and circuits. IEEE Trans. Circuits Syst. I Regul. Pap. 68(8), 3397–3410 (2021)

    Google Scholar 

  16. Bao, H., Liu, W., Chen, M.: Hidden extreme multistability and dimensionality reduction analysis for an improved non-autonomous memristive FitzHugh-Nagumo circuit. Nonlinear Dyn. 96(3), 1879–1894 (2019)

    MATH  Google Scholar 

  17. Xu, C., Wang, C., Jiang, J., et al.: Memristive circuit implementation of context-dependent emotional learning network and its application in multi-task. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. (2021). https://doi.org/10.1109/TCAD.2021.3116463

  18. Shen, H., Yu, F., Kong, X., et al.: Dynamics study on the effect of memristive autapse distribution on hopfield neural network. Chaos 32(8), 083133 (2022)

    MathSciNet  Google Scholar 

  19. Hong, Q., Shi, Z., Sun, J., et al.: Memristive self-learning logic circuit with application to encoder and decoder. Neural Comput. Appl. 33(10), 4901–4913 (2021)

    Google Scholar 

  20. Xu, C., Wang, C., Sun, Y., et al.: Memristor-based neural network circuit with weighted sum simultaneous perturbation training and its applications. Neurocomputing 462, 581–590 (2021)

    Google Scholar 

  21. Xu, Q., Tan, X., Zhu, D., et al.: Bifurcations to bursting and spiking in the Chay neuron and their validation in a digital circuit. Chaos Solitons Fractals 141, 110353 (2020)

    MathSciNet  Google Scholar 

  22. Xu, Q., Ju, Z., Ding, S., et al.: Electromagnetic induction effects on electrical activity within a memristive Wilson neuron model. Cogn. Neurodyn. (2022). https://doi.org/10.1007/s11571-021-09764-0

    Article  Google Scholar 

  23. Thottil, S.K., Ignatius, R.P.: Influence of memristor and noise on HR neurons. Nonlinear Dyn. 95(1), 239–257 (2019)

    Google Scholar 

  24. Bao, H., Hu, A., Liu, W., et al.: Hidden bursting firings and bifurcation mechanisms in memristive neuron model with threshold electromagnetic induction. IEEE transactions on neural networks and learning systems. 31(2), 502–511 (2019)

    Google Scholar 

  25. Wan, Q., Yan, Z., Li, F., et al.: Multistable dynamics in a Hopfield neural network under electromagnetic radiation and dual bias currents. Nonlinear Dyn. 109, 2085–2101 (2022)

    Google Scholar 

  26. Lin, H.R., Wang, C.H., Hong, Q.H., et al.: A multi-stable memristor and its application in a neural network. IEEE Transactions on Circuits and Systems-II: Brief Papers 67(12), 3472–3476 (2020)

    Google Scholar 

  27. Yu, F., Shen, H., Zhang, Z., et al.: Dynamics analysis, hardware implementation and engineering applications of novel multi-style attractors in a neural network under electromagnetic radiation. Chaos Solitons Fractals 152, 111350 (2021)

    MathSciNet  MATH  Google Scholar 

  28. Xiu, C., Zhou, R., Liu, Y., et al.: New chaotic memristive cellular neural network and its application in secure communication system. Chaos Solitons Fractals 141, 110316 (2020)

    MathSciNet  Google Scholar 

  29. Yu, F., Chen, H., Kong, X., et al.: Dynamic analysis and application in medical digital image watermarking of a new multi-scroll neural network with quartic nonlinear memristor. Eur. Phys. J. Plus. 137, 434 (2022)

    Google Scholar 

  30. Bao, H., Li, H., Hua, Z., et al.: Sine-transform-based memristive hyperchaotic model with hardware implementation. IEEE Trans. Ind. Inform. (2022). https://doi.org/10.1109/TII.2022.3157296

  31. Yu, F., Zhang, Z., Shen, H., et al.: FPGA implementation and image encryption application of a new PRNG based on a memristive Hopfield neural network with a special activation gradient. Chin. Phys. B 31(2), 020505 (2022)

    Google Scholar 

  32. Lv, M., Ma, J.: Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomputing 205, 375–381 (2016)

    Google Scholar 

  33. Bao, B., Hu, A., Bao, H., et al.: Three-dimensional memristive Hindmarsh-Rose neuron model with hidden coexisting asymmetric behaviors. Complexity. 2018 (2018)

  34. Kapetanovic, A.L., Susnjara, A., Poljak, D.: Stochastic analysis of the electromagnetic induction effect on a neurons action potential dynamics. Nonlinear Dyn. 105(4), 3585–3602 (2021)

    Google Scholar 

  35. Lin, H., Wang, C., Sun, Y., et al.: Firing multistability in a locally active memristive neuron model. Nonlinear Dyn. 100, 3667–3683 (2020)

    Google Scholar 

  36. Kafraj, M.S., Parastesh, F., Jafari, S.: Firing patterns of an improved Izhikevich neuron model under the effect of electromagnetic induction and noise. Chaos Solitons Fractals 137, 109782 (2020)

    MathSciNet  Google Scholar 

  37. Zhang, S., Zheng, J., Wang, X., et al.: Multi-scroll hidden attractor in memristive HR neuron model under electromagnetic radiation and its applications. Chaos 31(1), 011101 (2021)

    MathSciNet  MATH  Google Scholar 

  38. Li, R., Wang, Z., Dong, E.: A new locally active memristive synapse-coupled neuron model. Nonlinear Dyn. 104(4), 4459–4475 (2021)

    Google Scholar 

  39. Tan, Y., Wang, C.: A simple locally active memristor and its application in HR neurons. Chaos 30(5), 053118 (2020)

    MathSciNet  MATH  Google Scholar 

  40. Xu, Q., Liu, T., Feng, C., et al.: Continuous non-autonomous memristive Rulkov model with extreme multistability. Chin. Phys. B 30(12), 128702 (2021)

    Google Scholar 

  41. Njitacke, Z.T., Doubla, I.S., Mabekou, S., et al.: Hidden electrical activity of two neurons connected with an asymmetric electric coupling subject to electromagnetic induction: Coexistence of patterns and its analog implementation. Chaos Solitons Fractals 137, 109785 (2020)

    MathSciNet  Google Scholar 

  42. Chen, C., Chen, J., Bao, H., et al.: Coexisting multi-stable patterns in memristor synapse-coupled Hopfield neural network with two neurons. Nonlinear Dyn. 95, 3385–3399 (2019)

    MATH  Google Scholar 

  43. Bao, B., Yang, Q., Zhu, D., et al.: Initial-induced coexisting and synchronous firing activities in memristor synapse-coupled Morris-Lecar bi-neuron network. Nonlinear Dyn. 99(3), 2339–2354 (2020)

    Google Scholar 

  44. Li, Z., Zhou, H., Wang, M., et al.: Coexisting firing patterns and phase synchronization in locally active memristor coupled neurons with HR and FN models. Nonlinear Dyn. 104(2), 1455–1473 (2021)

    Google Scholar 

  45. Cai, J., Bao, H., Xu, Q., et al.: Smooth nonlinear fitting scheme for analog multiplierless implementation of Hindmarsh-Rose neuron model. Nonlinear Dyn. 104, 4379–4389 (2021)

    Google Scholar 

  46. Bao, B., Qian, H., Xu, Q., et al.: Coexisting behaviors of asymmetric attractors in hyperbolic-type memristor based Hopfield neural network. Front. Comput. Neurosci. 11, 81 (2017)

    Google Scholar 

  47. Chen, M., Qi, J., Wu, H., et al.: Bifurcation analyses and hardware experiments for bursting dynamics in non-autonomous memristive FitzHugh-Nagumo circuit. Sci. China Technol. Sci. 63, 1035–1044 (2020)

    Google Scholar 

  48. Zhu, D., Hou, L., Chen, M., et al.: FPGA-based experiments for demonstrating bi-stability in tabu learning neuron model. Circuit World. 47(2), 194–205 (2020)

    Google Scholar 

  49. Tlelo-Cuautle, E., Daz-Muoz, J.D., Gonzalez-Zapata, A.M., et al.: Chaotic image encryption using hopfield and hindmarshCrose neurons implemented on FPGA. Sensors. 20(5), 1326 (2020)

    Google Scholar 

  50. Yang, F., Wang, X.: Dynamic characteristic of a new fractional-order chaotic system based on the Hopfield Neural Network and its digital circuit implementation. Phys. Scr. 96(3), 035218 (2021)

    MathSciNet  Google Scholar 

  51. Chua, L.: If it’s pinched it’s a memristor. Semicond. Sci. Technol. 29(10), 104001 (2014)

    Google Scholar 

  52. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Nature 1(6), 445–466 (1961)

    Google Scholar 

  53. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50(10), 2061–2070 (1962)

    Google Scholar 

  54. Wolf, A., Swift, J.B., Swinney, H.L., et al.: Determining Lyapunov exponents from a time series. Physica D 16(3), 285–317 (1985)

    MathSciNet  MATH  Google Scholar 

  55. Hindmarsh, J.L., Rose, R.M.: A model of the nerve impulse using two first-order differential equations. Nature 296(5853), 162–164 (1982)

    Google Scholar 

  56. Chang, H., Wang, Z., Li, Y., et al.: Dynamic analysis of a bistable bi-local active memristor and its associated oscillator system. Int. J. Bifurcat. Chaos. 28(08), 1850105 (2018)

    MathSciNet  MATH  Google Scholar 

  57. Jin, P., Wang, G., Iu, H.H.C., et al.: A locally active memristor and its application in a chaotic circuit. IEEE Trans. Circuits Syst. II Express Briefs 65(2), 246–250 (2017)

    Google Scholar 

  58. Luo, J., Sun, L., Qiao, Y.: Dynamical analysis and circuit implementation of memristor synapse-coupled ring Hopfield neural network. Chin. J. Comput. Phys. 39(1), 109–117 (2022)

    Google Scholar 

  59. Charpentier, F., Drouin, E., Gauthier, C., et al.: Early after/depolarizations and triggered activity: mechanisms and autonomic regulation. Fundam. Clin. Pharmacol. 7(1), 39–49 (1993)

    Google Scholar 

  60. Bortolotto, G.S., Stenzinger, R.V., Tragtenberg, M.H.R.: Electromagnetic induction on a map-based action potential model. Nonlinear Dyn. 95(1), 433–444 (2019)

    Google Scholar 

Download references

Acknowledgements

This paper was supported by the Natural Science Foundation of Hunan Province under Grants 2022JJ30624 and 2022JJ10052, and by the Scientific Research Fund of Hunan Provincial Education Department under grant 21B0345, and by the National Natural Science Foundation of China under Grant 62172058, and by the Postgraduate Scientific Research Innovation Project of Hunan Province under Grant CX20200884, and by the Postgraduate Scientific Research Innovation project of Changsha University of Science and Technology under Grants CX2021SS72 and CX2021SS69.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. The authors have no relevant financial or nonfinancial interests to disclose. All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [Hui Shen], [Fei Yu] and [Shou Cai]. The first draft of the manuscript was written by [Hui Shen] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. Datasets generated and/or analyzed during the current study may be obtained from the corresponding authors upon reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, H., Yu, F., Wang, C. et al. Firing mechanism based on single memristive neuron and double memristive coupled neurons. Nonlinear Dyn 110, 3807–3822 (2022). https://doi.org/10.1007/s11071-022-07812-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07812-w

Keywords

Navigation