Skip to main content
Log in

Customized fastSLAM algorithm: analysis and assessment on real mobile platform

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The task of simultaneous localization and mapping (SLAM) allows a mobile robot to localize itself in the unknown environment, while building the map of the surrounding landscape. It is frequently used for the navigation of autonomous mobile robots. Despite the fact that there are plenty available solutions, real applications encounter various application constraints. The present work addresses the subject of the modified fastSLAM application using custom lidar as the detection sensor. Available localization solutions are assessed, their constraints are identified and corresponding solutions are proposed. The algorithm is implemented, tested using simulations and finally applied to the existing mobile platform. Its validation considers various practical aspects of its operation in real-time environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are not publicly available due to complexity of the experiments, but are available from the corresponding author on reasonable request.

References

  1. Alatise, M.B., Hancke, G.P.: A review on challenges of autonomous mobile robot and sensor fusion methods. IEEE Access 8, 39830–39846 (2020)

    Article  Google Scholar 

  2. Baharom, A.K., Abdul-Rahman, S., Jamali, R., Mutalib, S.: Towards modelling autonomous mobile robot localization by using sensor fusion algorithms. In: 2020 IEEE 10th international conference on system engineering and technology (ICSET), pp. 185–190 (2020)

  3. Bailey, T., Nieto, J., Guivant, J., Stevens, M., Nebot, E.: Consistency of the EKF-SLAM algorithm. In: IEEE international conference on intelligent robots and systems, pp. 3562–3568 (2006)

  4. Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

    Article  Google Scholar 

  5. Bonnabel, S., Martin, P., Rouchon, P.: Symmetry-preserving observers. IEEE Trans. Autom. Control 53(11), 2514–2526 (2008)

    Article  MathSciNet  Google Scholar 

  6. Borges, G., Aldon, M.J.: A split-and-merge segmentation algorithm for line extraction in 2d range images. In: Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, vol. 1, pp. 441–444 (2000)

  7. Choi, W., Kang, J., Oh, S.: Measurement noise estimator assisted extended kalman filter for slam problem. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2077–2082 (2009)

  8. Coleman, K., Bai, H., Taylor, C.N.: Extended invariant-EKF designs for state and additive disturbance estimation. Automatica 125, 109–464 (2021)

    Article  MathSciNet  Google Scholar 

  9. Dutta, A., Dasgupta, P.: Ensemble learning with weak classifiers for fast and reliable unknown terrain classification using mobile robots. IEEE Trans. Syst. Man Cybern. Syst. 47(11), 2933–2944 (2017)

    Article  Google Scholar 

  10. Grisetti, G., Kümmerle, R., Stachniss, C., Burgard, W.: A tutorial on graph-based SLAM. IEEE Intell. Transp. Syst. Mag. 2(4), 31–43 (2010)

    Article  Google Scholar 

  11. Kang, J., Choi, W., An, S., Oh, S.: Augmented EKF based SLAM method for improving the accuracy of the feature map. In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3725–3731 (2010). https://doi.org/10.1109/IROS.2010.5652938

  12. Kudriashov, A., Buratowski, T., Giergiel, M., Małka, P.: SLAM as probabilistic robotics framework approach. In: SLAM Techniques Application for Mobile Robot in Rough Terrain. Mechanisms and Machine Science, vol. 87, pp. 39–64. Springer, Cham (2020)

  13. Latif, Y., Cadena, C., Neira, J.: Robust loop closing over time for pose graph slam. Int. J. Robot. Res. 32(14), 1611–1626 (2013)

    Article  Google Scholar 

  14. Limited, D.: TREK1000 User Manual, V. 108. https://www.decawave.com/wp-content/uploads/2018/09/trek1000_user_manual.pdf (2016). Online; [2021.10.01]

  15. Ltd., B.B.C.: Product Manual of TFmini Plus, TFmini Plus LiDAR Module. http://benewake.com/ (2021). Online; [2021.10.01]

  16. Majhor, C.D.: Optimal mission planning of autonomous mobile agents for applications in microgrids, sensor networks, and military reconnaissance. Ph.D. thesis, Open Access Master’s Thesis, Michigan Technological University, Houghton, MI (2020)

  17. Mohammadzadeh, A., Taghavifar, H.: A robust fuzzy control approach for path-following control of autonomous vehicles. Soft. Comput. 24, 3223–3235 (2020)

    Article  Google Scholar 

  18. Montemerlo, M.: Fastslam: A factored solution to the simultaneous localization and mapping problem with unknown data association. Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA (2003)

  19. Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: Fastslam: A factored solution to the simultaneous localization and mapping problem. In: AAAI-02 Proceedings, pp. 593–598. American Association for Artificial Intelligence, USA (2002)

  20. Murphy, K.: Bayesian map learning in dynamic environments. In: Proceedings of the 12th International Conference on Neural Information Processing Systems, pp. 1015–1021. MIT Press, Cambridge, MA, USA (1999)

  21. Nebeluk, R., Ławryńczuk, M.: Computationally simple nonlinear mpc algorithm for vehicle obstacle avoidance with minimization of fuel utilization. IEEE Access 9, 17296–17311 (2021)

    Article  Google Scholar 

  22. Nguyen, V., Martinelli, A., Tomatis, N., Siegwart, R.: A comparison of line extraction algorithms using 2d laser rangefinder for indoor mobile robotics. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1929–1934 (2005)

  23. Noh, S., Park, J., Park, J.: Autonomous mobile robot navigation in indoor environments: mapping, localization, and planning. In: 2020 International Conference on Information and Communication Technology Convergence (ICTC), pp. 908–913 (2020)

  24. Ohashi, N., Funabora, Y., Doki, S., Doki, K.: Multisensor robust localization in various environment with correlation checking test. ROBOMECH Journal 8(3) (2021)

  25. Pei, M., An, H., Liu, B., Wang, C.: An improved dyna-q algorithm for mobile robot path planning in unknown dynamic environment. IEEE Trans. Syst. Man Cybern. Syst. pp. 1–11 (2021)

  26. Pfister, S.T.: Algorithms for mobile robot localization and mapping, incorporating detailed noise modeling and multi-scale feature extraction. Ph.D. thesis, California Institute of Technology (2006)

  27. Pomerleau, F., Colas, F., Siegwart, R.: A review of point cloud registration algorithms for mobile robotics. Found. Trends Robot. 4(1), 1–104 (2015)

    Article  Google Scholar 

  28. Racing, B.: BS706T. http://en.bsdracing.com/product/detail/120.html (2021). Online; [2021.10.01]

  29. Reymann, C., Lacroix, S.: Learning error models for graph slam. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 1121–1127 (2020)

  30. Sesmero, C.P., Lorente, S.V., Di Castro, M.: Graph slam built over point clouds matching for robot localization in tunnels. Sensors 21, 5340 (2021)

    Article  Google Scholar 

  31. Siegwart, R., Nourbakhsh, I.R., Scaramuzza, D.: Introduction to Autonomous Mobile Robots, 2nd edn. The MIT Press, Cambridge, Massachusetts (2011)

    Google Scholar 

  32. Smith, R., Cheeseman, P.: On the representation and estimation of spatial uncertainty. Int. J. Robot. Res. 5(4), 56–68 (1987)

    Article  Google Scholar 

  33. Solà, J., Vidal-Calleja, T., Civera, J., Montiel, J.M.M.: Impact of landmark parametrization on monocular EKF-SLAM with points and lines. Int. J. Comput. Vision 97, 339–368 (2012)

    Article  MathSciNet  Google Scholar 

  34. Sünderhauf, N., Protzel, P.: Towards a robust back-end for pose graph slam. In: 2012 IEEE International Conference on Robotics and Automation, pp. 1254–1261 (2012)

  35. Tsiogkas, N., Lane, D.: An evolutionary algorithm for online, resource constrained, multi-vehicle sensing mission planning (2018). ArXiv:1801.03552, Cornell Univesity Library

  36. Wang, C., Meng L.and She, S., Mitchell, I., Li, T., Tung, F., Wan, W., Meng, M., Silva, C.: Autonomous mobile robot navigation in uneven and unstructured indoor environments. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 109–116 (2017)

  37. Wang, H., Huang, S., Yang, G., Dissanayake, G.: Comparison of two different objective functions in 2d point feature slam. Automatica 97, 172–181 (2018)

    Article  MathSciNet  Google Scholar 

  38. Xiang, L., Ren, Z., Ni, M., Jenkins, O.C.: Robust graph slam in dynamic environments with moving landmarks. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2543–2549 (2015)

  39. Yuan, W., Li, Z., Su, C.: Multisensor-based navigation and control of a mobile service robot. IEEE Trans. Syst. Man Cybern. Syst. 51(4), 2624–2634 (2021)

    Article  Google Scholar 

  40. Zhang, T., Wu, K., Song, J., Huang, S., Dissanayake, G.: Convergence and consistency analysis for a 3-D Invariant-EKF SLAM. IEEE Robot. Automat. Lett. 2(2), 733–740 (2017)

    Article  Google Scholar 

  41. Zhang, Z.: Iterative point matching for registration of free-form curves and surfaces. Int. J. Comput. Vision 13(2), 119–152 (1994)

    Article  Google Scholar 

  42. Zhao, L., Huang, S., Dissanayake, G.: Linear SLAM: linearising the SLAM problems using submap joining. Automatica 100, 231–246 (2019)

    Article  MathSciNet  Google Scholar 

  43. Zheng, B., Zhang, Z.: An improved ekf-slam for mars surface exploration. Int. J. Aerospace Eng. 2019(7637), 469 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Bartosz Maziarz. The first draft of the manuscript was written by Paweł D. Domański and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Paweł D. Domański.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.The project was funded by POB Research Centre for Artificial Intelligence and Robotics of Warsaw University of Technology within the Excellence Initiative Program—Research University (ID-UB).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maziarz, B., Domański, P.D. Customized fastSLAM algorithm: analysis and assessment on real mobile platform. Nonlinear Dyn 110, 669–691 (2022). https://doi.org/10.1007/s11071-022-07633-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07633-x

Keywords

Navigation