Skip to main content
Log in

Simplified optimized finite-time containment control for a class of multi-agent systems with actuator faults

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, for a class of multi-agent systems with unknown dynamic functions and unknown actuator faults, the optimized finite-time containment control problem based on optimized backstepping technology is investigated. The optimal control strategy is obtained through a simplified reinforcement learning algorithm with the structure of identifier-critic-actor. Based on such a structure, the identifier, the critic and the actor are applied to estimate unknown dynamic functions, evaluate system performance and implement control behavior, respectively. The updating laws of the actor and critic are derived based on the gradient descent method of a simple positive function rather than the square of Bellman residual, which makes the updating laws simpler and eliminates the harsh persistent excitation condition. In addition, in order to eliminate the effect of actuator faults on system stability, a network-based fault observer is constructed to observe online actuator faults. Furthermore, the designed finite-time optimal distributed containment controllers ensure that the followers can ultimately converge to the convex hull composed by leaders within a predetermined finite time. Finally, a numerical simulation result and a practical example are presented to verify the effectiveness of the proposed control method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability statements

Data available on request from the authors.

References

  1. Li, X., Shi, P.: Cooperative fault-tolerant tracking control of heterogeneous hybrid-order mechanical systems with actuator and amplifier faults. Nonlinear Dyn. 98(1), 447–462 (2019)

    Google Scholar 

  2. Zhao, Y., Duan, Z.: Finite-time containment control without velocity and acceleration measurements. Nonlinear Dyn. 82(1), 259–268 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Liu, D., Liu, Z., Chen, C.L.P., Zhang, Y.: Distributed adaptive fuzzy control approach for prescribed-time containment of uncertain nonlinear multi-agent systems with unknown hysteresis. Nonlinear Dyn. 105(1), 257–275 (2021)

    Google Scholar 

  4. Wang, W., Liang, H., Zhang, Y., Li, T.: Adaptive cooperative control for a class of nonlinear multi-agent systems with dead zone and input delay. Nonlinear Dyn. 96(4), 2707–2719 (2019)

    MATH  Google Scholar 

  5. Li, H., Wu, Y., Chen, M., Lu, R.: Adaptive multigradient recursive reinforcement learning event-triggered tracking control for multiagent systems. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3090570

    Article  Google Scholar 

  6. Saber, R.O., Murray, R.M.: Consensus Protocols for Networks of Dynamic Agents. IEEE, Piscatway (2003)

    Google Scholar 

  7. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003)

    MathSciNet  MATH  Google Scholar 

  8. Ren, W., Cao, Y.: Distributed Coordination of Multi-agent Networks: Emergent Problems, Models, and Issues, vol. 1. Springer, Berlin (2011)

    MATH  Google Scholar 

  9. Liang, H., Du, Z., Huang, T., Pan, Y.: Neuroadaptive performance guaranteed control for multiagent systems with power integrators and unknown measurement sensitivity. IEEE Trans. Neural Netw. Learn. Syst. (2022). https://doi.org/10.1109/TNNLS.2022.3160532

    Article  Google Scholar 

  10. Cacace, F., Mattioni, M., Monaco, S., Celsi, L.R.: Topology-induced containment for general linear systems on weakly connected digraphs. Automatica 131, 109734 (2021)

    MathSciNet  MATH  Google Scholar 

  11. Gambuzza, L.V., Frasca, M., Sorrentino, F., Pecora, L.M., Boccaletti, S.: Controlling symmetries and clustered dynamics of complex networks. IEEE Trans. Netw. Sci. Eng. 8(1), 282–293 (2020)

    MathSciNet  Google Scholar 

  12. Cristofaro, A., Mattioni, M.: Hybrid consensus for multi-agent systems with time-driven jumps. Nonlinear Anal. Hybrid Syst. 43, 101113 (2021)

    MathSciNet  MATH  Google Scholar 

  13. Gambuzza, L.V., Frasca, M.: Distributed control of multiconsensus. IEEE Trans. Autom. Control 66(5), 2032–2044 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Li, J., Ren, W., Xu, S.: Distributed containment control with multiple dynamic leaders for double-integrator dynamics using only position measurements. IEEE Trans. Autom. Control 57(6), 1553–1559 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Qin, H., Chen, H., Sun, Y.: Distributed finite-time fault-tolerant containment control for multiple ocean bottom flying nodes. J. Frankl. Inst. 357(16), 242–264 (2020)

    MathSciNet  MATH  Google Scholar 

  16. Zeng, H., He, Y., Teo, H.L.: Monotone-delay-interval-based Lyapunov functionals for stability analysis of systems with a periodically varying delay. Automatica 138, 110030 (2022)

    MathSciNet  MATH  Google Scholar 

  17. Shangguan, X., Zhang, C., He, Y., Jin, L., Jiang, L., Spencer, J.W., Wu, M.: Robust load frequency control for power system considering transmission delay and sampling period. IEEE Trans. Ind. Inform. 17(8), 5292–5303 (2021)

    Google Scholar 

  18. Panteley, E., Loría, A.: Synchronization and dynamic consensus of heterogeneous networked systems. IEEE Trans. Autom. Control 62(8), 3758–3773 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Wang, C., Wen, C., Hu, Q., Wang, W., Zhang, X.: Distributed adaptive containment control for a class of nonlinear multiagent systems with input quantization. IEEE Trans. Neural Netw. Learn. Syst. 29(6), 2419–2428 (2018)

    MathSciNet  Google Scholar 

  20. Wang, W., Liang, H., Pan, Y., Li, T.: Prescribed performance adaptive fuzzy containment control for nonlinear multiagent systems using disturbance observer. IEEE Trans. Cybern. 50(9), 3879–3891 (2020)

    Google Scholar 

  21. Mattioni, M., Monaco, S.: Cluster partitioning of heterogeneous multi-agent systems. Automatica 138, 110136 (2022)

    MathSciNet  MATH  Google Scholar 

  22. Liberzon, D.: Calculus of Variations and Optimal Control Theory. Princeton University Press, Princeton (2011)

    MATH  Google Scholar 

  23. Sun, C., Ye, M., Hu, G.: Distributed time-varying quadratic optimization for multiple agents under undirected graphs. IEEE Trans. Autom. Control 62(7), 3687–3694 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Liu, Y., Geng, Z.: Finite-time optimal formation tracking control of vehicles in horizontal plane. Nonlinear Dyn. 76(1), 481–495 (2014)

    MathSciNet  MATH  Google Scholar 

  25. Li, Y., Liu, Y., Tong, S.: Observer-based neuro-adaptive optimized control for a class of strict-feedback nonlinear systems with state constraints. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3051030

    Article  Google Scholar 

  26. Bellman, R.: Dynamic programming. Science 153(3731), 34–37 (1966)

    MATH  Google Scholar 

  27. Werbos, P.: Approximate Dynamic Programming for Realtime Control and Neural Modelling. Handbook of Intelligent Control: Neural, Fuzzy and Adaptive Approaches, pp. 493–525. Van Nostrand Reinhold, New York (1992)

    Google Scholar 

  28. Bhasin, S., Kamalapurkar, R., Johnson, M., Vamvoudakis, K.G., Lewis, F.L., Dixon, W.E.: A novel actor-critic-identifier architecture for approximate optimal control of uncertain nonlinear systems. Automatica 49(1), 82–92 (2013)

    MathSciNet  MATH  Google Scholar 

  29. Wen, G., Chen, C.L.P., Feng, J., Zhou, N.: Optimized multi-agent formation control based on an identifier-actor-critic reinforcement learning algorithm. IEEE Trans. Fuzzy Syst. 26(5), 2719–2731 (2018)

    Google Scholar 

  30. Wen, G., Chen, C.L.P., Ge, S.S.: Simplified optimized backstepping control for a class of nonlinear strict-feedback systems with unknown dynamic functions. IEEE Trans. Cybern. 51(9), 4567–4580 (2020)

    Google Scholar 

  31. Wang, F., Chen, B., Lin, C., Zhang, J., Meng, X.: Adaptive neural network finite-time output feedback control of quantized nonlinear systems. IEEE Trans. Cybern. 48(6), 1839–1848 (2018)

    Google Scholar 

  32. Li, H., Zhao, S., He, W., Lu, R.: Adaptive finite-time tracking control of full state constrained nonlinear systems with dead-zone. Automatica 100, 99–107 (2019)

    MathSciNet  MATH  Google Scholar 

  33. Du, P., Pan, Y., Li, H., Lam, H.K.: Nonsingular finite-time event-triggered fuzzy control for large-scale nonlinear systems. IEEE Trans. Fuzzy Syst. 29(8), 2088–2099 (2021)

    Google Scholar 

  34. Shen, Q., Jiang, B., Shi, P., Zhao, J.: Cooperative adaptive fuzzy tracking control for networked unknown nonlinear multiagent systems with time-varying actuator faults. IEEE Trans. Fuzzy Syst. 22(3), 494–504 (2014)

    Google Scholar 

  35. Chen, S., Ho, D.W., Li, L., Liu, M.: Fault-tolerant consensus of multi-agent system with distributed adaptive protocol. IEEE Trans. Cybern. 45(10), 2142–2155 (2015)

    Google Scholar 

  36. Pan, Y., Li, Q., Liang, H., Lam, H.K.: A novel mixed control approach for fuzzy systems via membership functions online learning policy. IEEE Trans. Fuzzy Syst. (2021). https://doi.org/10.1109/TFUZZ.2021.3130201

  37. Guo, X., Xu, W., Wang, J., Park, J.H.: Distributed neuroadaptive fault-tolerant sliding-mode control for 2-D plane vehicular platoon systems with spacing constraints and unknown direction faults. Automatica 129, 109675 (2021)

    MathSciNet  MATH  Google Scholar 

  38. Guo, X., Xu, W., Wang, J., Park, J.H., Yan, H.: BLF-based neuroadaptive fault-tolerant control for nonlinear vehicular platoon with time-varying fault directions and distance restrictions. IEEE Trans. Intell. Transp. Syst. (2021). https://doi.org/10.1109/TITS.2021.3113928

    Article  Google Scholar 

  39. Jin, Y., Zhang, Y., Jing, Y., Fu, J.: An average dwell-time method for fault-tolerant control of switched time-delay systems and its application. IEEE Trans. Ind. Electron. 66(4), 3139–3147 (2019)

    Google Scholar 

  40. Li, Y.: Finite time command filtered adaptive fault tolerant control for a class of uncertain nonlinear systems. Automatica 106, 117–123 (2019)

    MathSciNet  MATH  Google Scholar 

  41. Wang, W., Wen, C.: Adaptive compensation for infinite number of actuator failures or faults. Automatica 47(10), 2197–2210 (2011)

    MathSciNet  MATH  Google Scholar 

  42. Jiang, B., Staroswiecki, M., Cocquempot, V.: Fault accommodation for nonlinear dynamic systems. IEEE Trans. Autom. Control 51(9), 1578–1583 (2006)

    MathSciNet  MATH  Google Scholar 

  43. Lewis, F.L., Vrabie, D., Syrmos, V.L.: Optimal Control. Wiley, London (2012)

    MATH  Google Scholar 

  44. Zeng, Z., Wang, J., Liao, X.: Global exponential stability of a general class of recurrent neural networks with time-varying delays. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 50(10), 1353–1358 (2003)

    MathSciNet  MATH  Google Scholar 

  45. Zeng, Z., Wang, J.: Complete stability of cellular neural networks with time-varying delays. IEEE Trans. Circuits Syst. I Regul. Pap. 53(4), 944–955 (2006)

    MathSciNet  MATH  Google Scholar 

  46. Yang, D., Li, T., Xie, X., Zhang, H.: Event-triggered integral sliding-mode control for nonlinear constrained-input systems with disturbances via adaptive dynamic programming. IEEE Trans. Syst. Man Cybern. Syst. 50(11), 4086–4096 (2020)

    Google Scholar 

  47. Jia, T., Pan, Y., Liang, H., Lam, H.K.: Event-based adaptive fixed-time fuzzy control for active vehicle suspension systems with time-varying displacement constraint. IEEE Trans. Fuzzy Syst. (2021). https://doi.org/10.1109/TFUZZ.2021.3075490

    Article  Google Scholar 

  48. Pan, Y., Wu, Y., Lam, H.K.: Security-based fuzzy control for nonlinear networked control systems with DoS attacks via a resilient event-triggered scheme. IEEE Trans. Fuzzy Syst. (2022). https://doi.org/10.1109/TFUZZ.2022.3148875

    Article  Google Scholar 

  49. Zhang, D., Ye, Z., Feng, G., Li, H.: Intelligent event-based fuzzy dynamic positioning control of nonlinear unmanned marine vehicles under DoS attack. IEEE Trans. Cybern. (2021). https://doi.org/10.1109/TCYB.2021.3128170

    Article  Google Scholar 

Download references

Funding

This work was partially supported by the National Natural Science Foundation of China (62003052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingnan Pan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

To prove Theorem 1, the following steps are given.

Step 1: According to the system (1), the derivative of the containment error \({z}_{i,1}\) can be rewritten as follows

$$\begin{aligned}&{\dot{z}}_{i,1}= -\sum _{j=1}^{Q}a_{i,j}( x_{j,2}+f_{j,1})-\!\!\sum _{r=Q+1}^{Q+P}\!\!a_{i,r}{\dot{y}}_{r,d}\nonumber \\&\quad +d_{i}(z_{i,2}+{{\hat{\alpha }}}_{i,1}^{*}+f_{i,1}). \end{aligned}$$
(53)

Then, \({{\tilde{\varXi }}}_{f_{i,1}}\) \(={{\hat{\varXi }}}_{f_{i,1}}-{\varXi }_{f_{i,1}}^{*}, {\tilde{\varXi }}_{c_{i,1}}={\hat{\varXi }}_{c_{i,1}}-\varXi _{J_{i,1}}^{*}\) and \({\tilde{\varXi }} _{a_{i,1}}={\hat{\varXi }}_{a_{i,1}}-\varXi _{J_{i,1}}^{*}\) are defined as the identifier, critic, and actor NN weight errors, and the Lyapunov function candidate for subsystem \(z_{i,1}\) is selected as follows

$$\begin{aligned} V_{i,1} =&\frac{1}{2}z_{i,1}^{2}\!\!+\!\frac{1}{2}{\tilde{\varXi }}_{f_{i,1}}^{T}\varGamma _{i,1}^{-1}{{\tilde{\varXi }}}_{f_{i,1}} \\&\quad +\!\frac{1}{2}{\tilde{\varXi }}_{c_{i,1}}^{T}{\tilde{\varXi }}_{c_{i,1}}\!\!+\!\frac{1}{2}{\tilde{\varXi }} _{a_{i,1}}^{T}{\tilde{\varXi }}_{a_{i,1}}. \end{aligned}$$

Then, the time derivative of \(V_{i,1}\) is given by

$$\begin{aligned}&{\dot{V}}_{i,1}=z_{i,1}{\dot{z}}_{i,1}-{\tilde{\varXi }}_{f_{i,1}}^{T}\varGamma _{i,1}^{-1}\dot{{\hat{\varXi }}}_{f_{i,1}}\\&\quad -{\tilde{\varXi }}_{c_{i,1}}^{T}\dot{{\hat{\varXi }}}_{c_{i,1}} -{\tilde{\varXi }}_{a_{i,1}}^{T}\dot{{\hat{\varXi }}}_{a_{i,1}}. \end{aligned}$$

Furthermore, \({\dot{V}}_{i,1}\) along (12), (14) and (16) is as follows

$$\begin{aligned}&{\dot{V}}_{i,1}= z_{i,1}(d_{i}{\hat{\alpha }}_{i,1}^{*}+F_{i,1}) -\ \gamma _{c_{i,1}}{\tilde{\varXi }}_{c_{i,1}}^{T}\ S_{J_{i,1}}\ S_{J_{i,1}}^{T}{{\hat{\varXi }} }_{c_{i,1}} \nonumber \\&\quad -{\tilde{\varXi }}_{a_{i,1}}^{T}S_{J_{i,1}}S_{J_{i,1}}^{T}\!(\gamma _{a_{i,1}}({{\hat{\varXi }}}_{a_{i,1}}\!\! -\!{{\hat{\varXi }}}_{c_{i,1}})\!+\!\gamma _{c_{i,1}}{{\hat{\varXi }}}_{c_{i,1}}) \nonumber \\&\quad +{\tilde{\varXi }}_{f_{i,1}}^{T}(S_{f_{i,1}}z_{i,1}-\sigma _{i,1}{{\hat{\varXi }}} _{f_{i,1}}) -\frac{3}{4}z_{i,1}^{2}-\frac{d_{i}}{2}z_{i,1}^{2}\nonumber \\&\quad +d_{i}z_{i,1}z_{i,2}. \end{aligned}$$

Based on (7) and (15), one has

$$\begin{aligned} {\dot{V}}_{i,1}=&-\beta _{i,1}z_{i,1}^{2l}-\frac{ 1}{2}z_{i,1}{\hat{\varXi }}_{a_{i,1}}^{T}S_{J_{i,1}}-\left( \frac{3}{4} +\frac{d_{i}}{2}\right) z_{i,1}^{2} \nonumber \\&-\sigma _{i,1}{\tilde{\varXi }}_{f_{i,1}}^{T}{\hat{\varXi }}_{f_{i,1}}\!\!-\!\gamma _{c_{i,1}} {\tilde{\varXi }}_{c_{i,1}}^{T}\!S_{J_{i,1}}\!S_{J_{i,1}}^{T}{\hat{\varXi }}_{c_{i,1}} \nonumber \\&-{\tilde{\varXi }}_{a_{i,1}}^{T}S_{J_{i,1}}S_{J_{i,1}}^{T}(\gamma _{a_{i,1}}( {\hat{\varXi }}_{a_{i,1}}-{\hat{\varXi }}_{c_{i,1}})\nonumber \\&+\gamma _{c_{i,1}}{\hat{\varXi }}_{c_{i,1}})+z_{i,1}\varepsilon _{f_{i,1}}+d_{i}z_{i,1}z_{i,2}. \end{aligned}$$
(54)

By adopting Young’s inequality, the following inequalities hold

$$\begin{aligned}&-\frac{1}{2}z_{i,1}{\hat{\varXi }}_{a_{i,1}}^{T}S_{J_{i,1}}\le \frac{1}{4}z_{i,1}^{2}+\frac{1}{4}({\hat{\varXi }}_{a_{i,1}}^{T} S_{J_{i,1}})^2,\nonumber \\&d_{i}z_{i,1}z_{i,2}\le \frac{d_{i}}{2}z_{i,1}^{2}+\frac{d_{i}}{2}z_{i,2}^{2},\nonumber \\&z_{i,1}\varepsilon _{f_{i,1}}\le \frac{1}{2}z_{i,1}^{2}+\frac{1}{2}\varepsilon _{f_{i,1}}^{2}. \end{aligned}$$
(55)

Substituting the inequalities (55) into (54), one has

$$\begin{aligned} {\dot{V}}_{i, 1} \le&-\sigma _{i, 1} {\tilde{\varXi }}_{f_{i, 1}}^{T} {\tilde{\varXi }}_{f_{i, 1}}\!-\!\gamma _{c_{i, 1}} {\tilde{\varXi }}_{c_{i, 1}}^{T} S_{J_{i, 1}} S_{J_{i, 1}}^{T} {\hat{\varXi }}_{c_{i, 1}} \nonumber \\&-\beta _{i,1} z_{i, 1}^{2 l}+\frac{1}{2} \varepsilon _{f_{i, 1}}^{2}+\frac{1}{4} ({\hat{\varXi }}_{a_{i, 1}}^{T} S_{J_{i, 1}})^2\nonumber \\&-\gamma _{a_{i, 1}} {\tilde{\varXi }}_{a_{i, 1}}^{T} S_{J_{i, 1}} S_{J_{i, 1}}^{T} {\hat{\varXi }}_{a_{i, 1}}+\frac{1}{2} d_{i} z_{i, 2}^{2} \nonumber \\&+(\gamma _{a_{i, 1}}-\gamma _{c_{i, 1}}) {\tilde{\varXi }}_{a_{i, 1}}^{T} S_{J_{i, 1}} S_{J_{i, 1}}^{T} {\hat{\varXi }}_{c_{i, 1}}. \end{aligned}$$
(56)

On the basis of \({\tilde{\varXi }}_{f_{i,1}}={\hat{\varXi }}_{f_{i,1}}-\varXi _{f_{i,1}}^{*}\), we can obtain

$$\begin{aligned} {\tilde{\varXi }}_{f_{i,1}}^{T}{\hat{\varXi }}_{f_{i,1}}=\ \frac{1}{2}(\Vert {\tilde{\varXi }} _{f_{i,1}}\Vert ^2+\Vert {\hat{\varXi }}_{f_{i,1}}\Vert ^2-\Vert \varXi _{f_{i,1}}^{*}\Vert ^2). \end{aligned}$$
(57)

Similarly, owing to \({\tilde{\varXi }}_{{{\bar{o}}}_{i,1}}={\hat{\varXi }}_{{{\bar{o}}}_{i,1}}-\varXi ^*_{{{\bar{o}}}_{i,1}}\) with \({{\bar{o}}}=a,c\), the following equation can be derived

$$\begin{aligned}&{\tilde{\varXi }}_{{{\bar{o}}}_{i,1}}^{T}S_{J_{i,1}}S_{J_{i,1}}^{T}{\hat{\varXi }}_{{{\bar{o}}}_{i,1}}\nonumber \\&= \frac{1}{2}({\tilde{\varXi }}_{{{\bar{o}}}_{i,1}}^{T}S_{J_{i,1}})^2 \!+\!\frac{1}{2}({\hat{\varXi }}_{{{\bar{o}}}_{i,1}}^{T}S_{J_{i,1}})^2 \!-\!\frac{1}{2}(\varXi _{J_{i,1}}^{*T}S_{J_{i,1}}) ^{2}. \end{aligned}$$
(58)

Substituting (57) and (58) into (56), one gets

$$\begin{aligned}&{\dot{V}}_{i,1} \le -\beta _{i,1}z_{i,1}^{2l} - \frac{\sigma _{i,1}}{2}(\Vert {{\tilde{\varXi }}}_{f,1}\Vert ^2-\Vert \varXi _{{f_{i,1}}}^{*}\Vert ^2)+ \frac{1}{2}{d_i}z_{i,2}^2\\&\quad - \frac{{{\gamma _{{c_{i,1}}}}}}{2}({{{{\tilde{\varXi }}}}_{{c_{i,1}}}}{S_{{J_{i,1}}}})^2\!-\!\frac{{{\gamma _{{a_{i,1}}}}}}{2}({{{{\tilde{\varXi }}}}_{{a_{i,1}}}}{S_{{J_{i,1}}}})^2 +\frac{1}{2}\varepsilon _{{f_{i,1}}}^2\\&\quad -\left( {\frac{{{\gamma _{{a_{i,1}}}}}}{2} - \frac{1}{4}}\right) \left( {{\hat{\varXi }}}_{{a_{i,1}}}^T{S_{{J_{i,1}}}}\right) ^2- \frac{{{\gamma _{{c_{i,1}}}}}}{2}({{\hat{\varXi }}}_{{c_{i,1}}}^T{S_{{J_{i,1}}}})^2\\&\quad + ( {{\gamma _{{a_{i,1}}}} - {\gamma _{{c_{i,1}}}}} ){{\tilde{\varXi }}}_{{a_{i,1}}}^T{S_{{J_{i,1}}}}S_{{J_{i,1}}}^T{{{{\hat{\varXi }}}}_{{c_{i,1}}}}\\&\quad + ( {\frac{{{\gamma _{{c_{i,1}}}}}}{2} + \frac{{{\gamma _{{a_{i,1}}}}}}{2}} ){( {\varXi _{{J_{i,1}}}^{*T}{S_{{J_{i,1}}}}} )^2}. \end{aligned}$$

By using Young’s inequality, one has

$$\begin{aligned}&({{\gamma _{{a_{i,1}}}}-{\gamma _{{c_{i,1}}}}}) {\tilde{\varXi }}_{{ a_{i,1}}}^{T}{S_{{J_{i,1}}}}S_{{J_{i,1}}}^{T}{{{\hat{\varXi }}}_{{c_{i,1} }}}\nonumber \\&\quad \le \frac{{{\gamma _{{a_{i,1}}}}-{\gamma _{{c_{i,1}}}}}}{2}({\tilde{\varXi }}_{{ a_{i,1}}}^{T}{S_{{J_{i,1}}}})^2 +\frac{{{\gamma _{{a_{i,1}}}}-{\gamma _{{c_{i,1}}}}}}{2}({\hat{\varXi }}_{{c_{i,1}} }^{T}{S_{{J_{i,1}}}})^2. \end{aligned}$$

Further, it yields

$$\begin{aligned} {\dot{V}}_{i, 1} \le&-\beta _{i,1} z_{i, 1}^{2 l}-\frac{\sigma _{i, 1}}{2} {\tilde{\varXi }}_{f_{i, 1}}^{T} \ {\tilde{\varXi }}_{f_{i, 1}}\!-\!\frac{\gamma _{c_{i, 1}}}{2} ({\tilde{\varXi }}_{c_{i, 1}}^{T}\ S_{J_{i, 1}})^2\nonumber \\&-\frac{\gamma _{c_{i, 1}}}{2} ({\tilde{\varXi }}_{a_{i, 1}}^{T} S_{J_{i, 1}})^2\!-\!(\gamma _{c_{i, 1}}\!-\!\frac{\gamma _{a_{i, 1}}}{2})({\hat{\varXi }}_{c_{i, 1}}^{T} S_{J_{i, 1}})^{2}\nonumber \\&+ ( {\frac{{{\gamma _{{c_{i,1}}}}}}{2} + \frac{{{\gamma _{{a_{i,1}}}}}}{2}} ){( {\varXi _{{J_{i,1}}}^{*T}{S_{{J_{i,1}}}}} )^2}\!+\!\frac{1}{2} \varepsilon _{f_{i, 1}}^{2}\!+\!\frac{1}{2} d_{i} z_{i, 2}^{2}\nonumber \\&-(\frac{\gamma _{a_{i, 1}}}{2}-\frac{1}{4})({\hat{\varXi }}_{a_{i, 1}}^{T} S_{J_{i, 1}})^{2}+\frac{\sigma _{i, 1}}{2} \varXi _{f_{i, 1}}^{* T} \varXi _{f_{i, 1}}^{*}. \end{aligned}$$
(59)

Based on (17), (59) can be rewritten as

$$\begin{aligned} {\dot{V}}_{i, 1} \le&-\beta _{i,1} z_{i, 1}^{2 l}-\frac{\sigma _{i, 1}}{2} {\tilde{\varXi }}_{f_{i, 1}}^{T} {\tilde{\varXi }}_{f_{i,1}}+\frac{1}{2} d_{i} z_{i, 2}^{2}+c_{i, 1}\nonumber \\&-\frac{\gamma _{c_{i, 1}}}{2}( {\tilde{\varXi }}_{c_{i, 1}}^{T} S_{J_{i, 1}})^2 -\frac{\gamma _{c_{i, 1}}}{2} ({\tilde{\varXi }}_{a_{i, 1}}^{T} S_{J_{i, 1}})^2, \end{aligned}$$
(60)

where \(c_{i,1}=(\gamma _{c_{i,1}}/2+\gamma _{a_{i,1}}/2)( \varXi _{J_{i,1}}^{*T}S_{J_{i,1}}) ^{2}+\varepsilon _{f_{i,1}}^{2}/2 + (\sigma _{i,1}/2)\varXi _{f_{i,1}}^{*T}\varXi _{f_{i,1}}^{*} \). Since all terms in \(c_{i,1}\) are bounded, there exists a positive constant \(C_{i,1}\) such that \(|c_{i,1}(t)| \le C_{i,1}\).

Denote \(\zeta _{\varGamma _{i,1}^{-1}}^{\max }\) and \(\zeta _{S_{J_{i,1}}}^{\min }\) as the maximum eigenvalue and the minimum eigenvalue of \(\varGamma _{i,1}^{-1}\) and \(S_{J_{i,1}}S_{J_{i,1}}^T\), respectively. Then, one has

$$\begin{aligned} -{\tilde{\varXi }}_{{f_{i,1}}}^{T}{{{\tilde{\varXi }}}_{{f_{i,1}}}}&\le -\frac{1}{{{ \zeta _{\varGamma _{i,1}^{-1}}^{\max }}}}{\tilde{\varXi }}_{{f_{i,1}}}^{T}\varGamma _{i,1}^{-1}{{{\tilde{\varXi }}}_{{f_{i,1}}}}, \nonumber \\ -({\tilde{\varXi }}_{{c_{i,1}}}^{T}{S_{{J_{i,1}}}})^2&\le -\zeta _{{S_{{J_{i,1}}}}}^{\min }{\tilde{\varXi }}_{{c_{i,1}} }^{T}{{{\tilde{\varXi }}}_{{c_{i,1}}}}, \nonumber \\ -({\tilde{\varXi }}_{{a_{i,1}}}^{T}{S_{{J_{i,1}}}})^2&\le -\zeta _{{S_{{J_{i,1}}}}}^{\min }{\tilde{\varXi }}_{{a_{i,1}} }^{T}{{{\tilde{\varXi }}}_{{a_{i,1}}}}. \end{aligned}$$
(61)

Substituting (61) into (60), we obtain

$$\begin{aligned} {\dot{V}}_{i, 1} \le&-\beta _{i,1} z_{i, 1}^{2 l}\!-\!\frac{\sigma _{i, 1}}{2 \zeta _{\varGamma _{i, 1}^{-1}}^{\max }} {\tilde{\varXi }}_{f_{i, 1}}^{T} \varGamma _{i, 1}^{-1} {\tilde{\varXi }}_{f_{i, 1}}\!+\!\frac{1}{2} d_{i} z_{i, 2}^{2}+C_{i, 1}\\&-\frac{\gamma _{c_{i, 1}}}{2} \zeta _{J_{i, 1}}^{\min } {\tilde{\varXi }}_{c_{i, 1}}^{T} {\tilde{\varXi }}_{c_{i, 1}} -\frac{\gamma _{c_{i, 1}}}{2} \zeta _{J_{i, 1}}^{\min } {\tilde{\varXi }}_{a_{i, 1}}^{T} {\tilde{\varXi }}_{a_{i, 1}}. \end{aligned}$$

Step m (\(2\le m\le n-1\)): The Lyapunov function of the mth subsystem is defined as follows

$$\begin{aligned} V_{i,m}=&V_{i,m-1}+\frac{1}{2}z^2_{i,m}-\frac{1}{2}{\tilde{\varXi }} _{f_{i,m}}^{T}\varGamma _{i,m}^{-1}{\tilde{\varXi }} _{f_{i,m}}-\!\!\frac{1}{2}{\tilde{\varXi }}_{c_{i,m}}^{T}{\tilde{\varXi }}_{c_{i,m}}\\&-\frac{1}{2}{\tilde{\varXi }}_{a_{i,m}}^{T}{\tilde{\varXi }}_{a_{i,m}}. \end{aligned}$$

Then, the derivative of Lyapunov candidate function \(V_{i,m}\) is as follows

$$\begin{aligned} \dot{V}_{i,m}=&\dot{V}_{i,m-1}+z_{i,m}\dot{z}_{i,m}-{\tilde{\varXi }} _{f_{i,m}}^{T}\varGamma _{i,m}^{-1} \dot{{\hat{\varXi }}}_{f_{i,m}} \!\!-{\tilde{\varXi }}_{c_{i,m}}^{T}\dot{{\hat{\varXi }}}_{c_{i,m}}\\&-{\tilde{\varXi }}_{a_{i,m}}^{T}\dot{{\hat{\varXi }}}_{a_{i,m}}. \end{aligned}$$

Based on (27)–(29), one has

$$\begin{aligned}&{\dot{V}}_{i,m}= z_{i,m}(-\beta _{i,m}z_{i,m}^{2l-1}-\frac{1}{2} {\hat{\varXi }}_{a_{i,m}}^{T}S_{J_{i,m}}-{\hat{\varXi }}_{f_{i,m}}^{T}S_{f_{i,m}} \nonumber \\&\quad +\varXi _{f_{i,m}}^{*T}S_{f_{i,m}}+\varepsilon _{f_{i,m}})+{\dot{V}}_{i,m-1}-{\tilde{\varXi }}_{a_{i,m}}^{T}S_{J_{i,m}}\nonumber \\&\quad \times S_{J_{i,m}}^{T} (\gamma _{a_{i,m}}({\hat{\varXi }}_{a_{i,m}}-{\hat{\varXi }}_{c_{i,m}})+\gamma _{c_{i,m}}{\hat{\varXi }}_{c_{i,m}}) \nonumber \\&\quad +{\tilde{\varXi }}_{f_{i,m}}^{T}(S_{f_{i,m}} z_{i,m}-\sigma _{i,m}{\hat{\varXi }}_{f_{i,m}})+z_{i,m}z_{i,m+1} \nonumber \\&\quad -\gamma _{c_{i,m}}{\tilde{\varXi }}_{c_{i,m}}^{T}S_{J_{i,m}}S_{J_{i,m}}^{T} {\hat{\varXi }} _{c_{i,m}} -\frac{7}{4} z_{i,m}^{2} . \end{aligned}$$
(62)

Using Young’s inequality, the following facts hold

$$\begin{aligned}&-\frac{1}{2}z_{i,m}{\hat{\varXi }}_{a_{i,m}}^{T}S_{J_{i,m}}\le \frac{1}{4} z_{i,m}^{2}+\frac{1}{4}({\hat{\varXi }}_{a_{i,m}}^{T}S_{J_{i,m}})^2,\\&\quad z_{i,m}z_{i,m+1}\le \frac{1}{2}z_{i,m}^{2}+\frac{1}{2} z_{i,m+1}^{2},\\&\quad z_{i,m}\varepsilon _{f_{i,m}}\le \frac{1}{2}z_{i,m}^{2}+\frac{1}{2} \varepsilon _{f_{i,m}}^{2}. \end{aligned}$$

Owing to the fact that \({\tilde{\varXi }}_{o_{i,m}}={\hat{\varXi }}_{o_{i,m}}-\varXi _{o_{i,m}}^{*}\) with \(o=f,a,c\) and based on Young’s inequality, we have

$$\begin{aligned}&{\tilde{\varXi }}_{f_{i,m}}^{T}{\hat{\varXi }}_{f_{i,m}}\\&=\frac{1}{2}{\tilde{\varXi }} _{f_{i,m}}^{T}{\tilde{\varXi }}_{f_{i,m}}+\frac{1}{2}{\hat{\varXi }}_{f_{i,m}}^{T}{\hat{\varXi }}_{f_{i,m}} -\frac{1}{2}\varXi _{f_{i,m}}^{*T}\varXi _{f_{i,m}}^{*},\\&{\tilde{\varXi }}_{c_{i,m}}^{T}S_{J_{i,m}}S_{J_{i,m}}^{T}{\hat{\varXi }}_{c_{i,m}}\\&= \frac{1}{2}(({\tilde{\varXi }}_{c_{i,m}}^{T}S_{J_{i,m}})^2 +({\hat{\varXi }}_{c_{i,m}}^{T}S_{J_{i,m}})^2-( \varXi _{J_{i,m}}^{*T}S_{J_{i,m}}) ^{2}),\\&{\tilde{\varXi }}_{a_{i,m}}^{T}S_{J_{i,m}}S_{J_{i,m}}^{T}{\hat{\varXi }}_{a_{i,m}}\\&=\frac{1}{2}(({\tilde{\varXi }}_{a_{i,m}}^{T}S_{J_{i,m}})^2 +({\hat{\varXi }}_{a_{i,m}}^{T}S_{J_{i,m}})^2-( \varXi _{J_{i,m}}^{*T}S_{J_{i,m}}) ^{2}). \end{aligned}$$

By using Young’s inequality, one has

$$\begin{aligned} {\tilde{\varXi }}_{a_{i, m}}^{T}\!S_{J_{i, m}}\! S_{J_{i, m}}^{T} \!{\hat{\varXi }}_{c_{i, m}} \le \frac{({\tilde{\varXi }}_{a_{i, m}}^{T} \!S_{J_{i, m}} )^2}{2}\! \!+\!\!\frac{({\hat{\varXi }}_{c_{i, m}}^{T}\! S_{J_{i, m}})^2}{2}. \end{aligned}$$

Substituting the above equations into (62), it yields

$$\begin{aligned} {\dot{V}}_{i,m}\le&-\frac{\gamma _{c_{i,m}}}{2}({\tilde{\varXi }} _{a_{i,m}}^{T}S_{J_{i,m}})^2\!\!-\!(\frac{\gamma _{a_{i,m}}}{2}\!\!-\!\frac{1}{4})({\hat{\varXi }} _{a_{i,m}}^{T}\!S_{J_{i,m}})^2\nonumber \\&-\sum _{k=1}^{m-1}\frac{\gamma _{c_{i,k}}}{2} \zeta _{J_{i,k}}^{\min } {\tilde{\varXi }}_{a_{i,k}}^{T} {\tilde{\varXi }}_{a_{i,k}}-\frac{\sigma _{i,m}}{2} {\tilde{\varXi }}_{f_{i,m}}^{T}{\tilde{\varXi }}_{f_{i,m}} \nonumber \\&-\frac{\gamma _{c_{i,m}}}{2}({\tilde{\varXi }} _{c_{i,m}}^{T}S_{J_{i,m}})^2+\frac{1}{2}z_{i,m+1}^{2}+c_{i,m} \nonumber \\&-\sum _{k=1}^{m}\beta _{i,k}z_{i,k}^{2l}-\sum _{k=1}^{m-1}\frac{\gamma _{c_{i, k}}}{2} \zeta _{J_{i,k}}^{\min } {\tilde{\varXi }}_{c_{i,k}}^{T} {\tilde{\varXi }}_{c_{i,k}}\nonumber \\&-\sum _{k=1}^{m-1}\frac{\sigma _{i, k}}{2 \zeta _{\varGamma _{i, k}^{-1}}^{\max }} {\tilde{\varXi }}_{f_{i, k}}^{T} \varGamma _{i, k}^{-1} {\tilde{\varXi }}_{f_{i, k}}+\sum _{k=1}^{m-1}C_{i,k}\nonumber \\&-(\gamma _{c_{i,m}}-\frac{\gamma _{a_{i,m}}}{2})({\hat{\varXi }} _{c_{i,m}}^{T}S_{J_{i,m}})^2, \end{aligned}$$
(63)

where \(c_{i,m}=\frac{\gamma _{c_{i,m}}}{2}( \varXi _{J_{i,m}}^{*T}S_{J_{i,m}}) ^{2}+\frac{\gamma _{a_{i,m}}}{2}( \varXi _{J_{i,m}}^{*T}S_{J_{i,m}}) ^{2}+\frac{\sigma _{i,m}}{2} \varXi _{f_{i,m}}^{*T}\varXi _{f_{i,m}}^{*}+\frac{1}{2}\varepsilon _{f_{i,m}}^{2}\) is a bounded function by a positive constant \(C_{i,m}\), that is, \(|c_{i,m}(t)|\le C_{i,m}\), \(\zeta _{\varGamma _{i,m}^{-1}}^{\max }\) and \(\zeta _{S_{J_{i,m}}}^{\min }\) are denoted as the maximum eigenvalue and the minimum eigenvalue of \(\varGamma _{i,m}^{-1}\) and \(S_{J_{i,m}}S_{J_{i,m}}^T\), respectively.

Similar to Step 1 and based on the condition (30), (63) becomes

$$\begin{aligned} {\dot{V}}_{i,m}\le&-\sum _{k=1}^{m}\beta _{i,k}z_{i,k}^{2l}-\sum _{k=1}^{m}\frac{\sigma _{i,k}}{2 \zeta _{\varGamma _{i, k}^{-1}}^{\max }} {\tilde{\varXi }}_{f_{i, k}}^{T} \varGamma _{i, k}^{-1} {\tilde{\varXi }}_{f_{i, k}}\\&-\sum _{k=1}^{m}\frac{\gamma _{c_{i,k}}}{2} \zeta _{J_{i,k}}^{\min } {\tilde{\varXi }}_{a_{i,k}}^{T} {\tilde{\varXi }}_{a_{i,k}}+\frac{1}{2}z_{i,m+1}^{2}\\&-\sum _{k=1}^{m}\frac{\gamma _{c_{i, k}}}{2} \zeta _{J_{i,k}}^{\min } {\tilde{\varXi }}_{c_{i,k}}^{T} {\tilde{\varXi }}_{c_{i,k}}+\sum _{k=1}^{m}C_{i,k}. \end{aligned}$$

Step n: In the last Step, we choose the following Lyapunov function

$$\begin{aligned}&V_{i,n}= V_{i,n-1}+\frac{1}{2}z_{i,n}^{2}+\frac{1}{2}{\tilde{\varXi }} _{f_{i,n}}^{T}\varGamma _{i,n}^{-1}{\tilde{\varXi }}_{f_{i,n}}+\frac{1}{2}\tilde{u}^2_{f_i}\\&\quad +\frac{1}{2}{\tilde{\varXi }}_{c_{i,n}}^{T}{\tilde{\varXi }}_{c_{i,n}}+\frac{1}{2}{\tilde{\varXi }} _{a_{i,n}}^{T}{\tilde{\varXi }}_{a_{i,n}}, \end{aligned}$$

where \({{\tilde{\varXi }}}_{f_{i,n}}\) \(={{\hat{\varXi }}}_{f_{i,n}}-{\varXi }_{f_{i,n}}^{*} ,{\tilde{\varXi }}_{c_{i,n}}={\hat{\varXi }}_{c_{i,n}}-\varXi _{c_{i,n}}^{*}\), \({\tilde{\varXi }} _{a_{i,n}}={\hat{\varXi }}_{a_{i,n}}-\varXi _{a_{i,n}}^{*}\) and \({\tilde{u}}_{f_{i}}\) \(={u}_{f_{i}}-{{\hat{u}}}_{f_{i}}\).

According to (47), the time derivative of \(V_{i,n}\) is given by

$$\begin{aligned} \dot{V}_{i,n}=&\dot{V}_{i,n-1}+z_{i,n}({{\hat{u}}}_{i}^*+g_i{\tilde{u}}_{f_i}+f_{i,n}-\dot{{\hat{\alpha }}}_{i,n-1}^{*})\nonumber \\&+{\tilde{\varXi }} _{f_{i,n}}^{T}\varGamma _{i,n}^{-1}\dot{{\hat{\varXi }}}_{f_{i,n}} +{\tilde{\varXi }}_{c_{i,n}}^{T}\dot{{\hat{\varXi }}}_{c_{i,n}}+{\tilde{\varXi }} _{a_{i,n}}^{T}\dot{{\hat{\varXi }}}_{a_{i,n}}\nonumber \\&+\tilde{u}_{f_i}({{\dot{u}}}_{f_{i}}-\dot{{\hat{u}}}_{f_{i}}). \end{aligned}$$
(64)

Substituting (49) into (64), one has

$$\begin{aligned} \dot{V}_{i,n}=&\dot{V}_{i,n-1}+z_{i,n}\left( {{\hat{u}}}_{i}^*+F_{i,n}-\frac{5}{4}z_{i,n}\right) +{\tilde{\varXi }} _{a_{i,n}}^{T}\dot{{\hat{\varXi }}}_{a_{i,n}}\nonumber \\&+{\tilde{\varXi }} _{f_{i,n}}^{T}\varGamma _{i,n}^{-1}\dot{{\hat{\varXi }}}_{f_{i,n}} +{\tilde{\varXi }}_{c_{i,n}}^{T}\dot{{\hat{\varXi }}}_{c_{i,n}} +{{\dot{u}}}_{f_{i}}\tilde{u}_{f_i}\nonumber \\&+\gamma _{t_{i}}\tilde{u}_{f_i}{\hat{u}}_{f_i}, \end{aligned}$$
(65)

where \(F_{i,n}=f_{i,n}-\dot{{\hat{\alpha }}}_{i,n-1}^{*}+(5/4)z_{i,n}\).

Then, according to Young’s inequality and Assumption 2, we can obtain

$$\begin{aligned} \gamma _{t_{i}}\tilde{u}_{f_i}{\hat{u}}_{f_i}&\le -\gamma _{t_{i}}\tilde{u}^2_{f_i}+\frac{\gamma _{t_{i}}}{2}\varpi ^2_{i,1}+\frac{\gamma _{t_{i}}}{2}\tilde{u}^2_{f_i}, \end{aligned}$$
(66)
$$\begin{aligned} {{\dot{u}}}_{f_{i}}\tilde{u}_{f_i}&\le \frac{1}{2}\varpi ^2_{i,2}+\frac{1}{2}\tilde{u}^2_{f_i}, \end{aligned}$$
(67)

where \(\varpi _{i,1}\) and \(\varpi _{i,2}\) are constants.

Combining (49) and (65)–(67), and similar to Step 1, (65) yields

$$\begin{aligned} {\dot{V}}_{i,n}\!\le \!&-\!\sum _{k=1}^{n}\beta _{i,k}z_{i,k}^{2l}\!-\!\!\sum _{k=1}^{n}\frac{\sigma _{i,k}}{2\zeta _{\varGamma _{i, k}^{-1}}^{\max }} {\tilde{\varXi }}_{f_{i, k}}^{T} \varGamma _{i, k}^{-1} {\tilde{\varXi }}_{f_{i, k}}\!\!+\!\sum _{k=1}^{n}C_{i,k}\\&-\sum _{k=1}^{n}\frac{\gamma _{c_{i,k}}}{2} \zeta _{J_{i,k}}^{\min } {\tilde{\varXi }}_{a_{i,k}}^{T} {\tilde{\varXi }}_{a_{i,k}}+\frac{\gamma _{t_{i}}}{2}\varpi ^2_{i,1}+\frac{1}{2}\varpi ^2_{i,2}\\&-\sum _{k=1}^{n}\frac{\gamma _{c_{i, k}}}{2} \zeta _{J_{i,k}}^{\min } {\tilde{\varXi }}_{c_{i,k}}^{T} {\tilde{\varXi }}_{c_{i,k}}-\left( \frac{\gamma _{t_i}-1}{2}\right) \tilde{u}^2_{f_i}. \end{aligned}$$

Next, the proof of Theorem 1 (1) is given as follows. The total Lyapunov function candidate is selected as

$$\begin{aligned} V=\sum _{i=1}^{Q}{V}_{i,n} . \end{aligned}$$

Then, the time derivative of V is given by

$$\begin{aligned} \dot{V} \le&\sum _{i=1}^{Q}\Bigg (-\sum _{k=1}^{n}\beta _{i,k}z_{i,k}^{2l}-\sum _{k=1}^{n}\frac{\sigma _{i,k}}{2\zeta _{\varGamma _{i, k}^{-1}}^{\max }} {\tilde{\varXi }}_{f_{i, k}}^{T} \varGamma _{i, k}^{-1} {\tilde{\varXi }}_{f_{i, k}}\nonumber \\&-\sum _{k=1}^{n}\frac{\gamma _{c_{i, k}}}{2} \zeta _{J_{i,k}}^{\min } {\tilde{\varXi }}_{c_{i,k}}^{T} {\tilde{\varXi }}_{c_{i,k}}-\left( \frac{\gamma _{t_i}-1}{2}\right) \tilde{u}^2_{f_i}\nonumber \\&-\sum _{k=1}^{n}\frac{\gamma _{c_{i,k}}}{2} \zeta _{J_{i,k}}^{\min } {\tilde{\varXi }}_{a_{i,k}}^{T} {\tilde{\varXi }}_{a_{i,k}}+D_{i}\Bigg ), \end{aligned}$$
(68)

where \(D_i=\sum _{k=1}^{n}C_{i,k}+\frac{\gamma _{t_{i}}}{2}\varpi ^2_{i,1}+\frac{1}{2}\varpi ^2_{i,2}\) is a constant.

Moreover, by Lemma 4 and denoting \(p=1,q={\tilde{\varXi }}_{f_{i, k}}^{T} \varGamma _{i, k}^{-1} {\tilde{\varXi }}_{f_{i, k}}\), and \(\imath =1-l\), \(\jmath =l\), \(\tau =l^{\frac{l}{ 1-l}}\), the following inequality holds

$$\begin{aligned} ({\tilde{\varXi }}_{f_{i, k}}^{T} \varGamma _{i, k}^{-1} {\tilde{\varXi }}_{f_{i, k}}) ^{l}\le \tau l+{\tilde{\varXi }}_{f_{i, k}}^{T} \varGamma _{i, k}^{-1} {\tilde{\varXi }}_{f_{i, k}}. \end{aligned}$$
(69)

Similar to (69), we can get

$$\begin{aligned} \begin{aligned} \left\{ \begin{aligned}&({\tilde{\varXi }}_{c_{i,k}}^{T}{\tilde{\varXi }}_{c_{i,k}}) ^{l}\le \ \tau l+\tilde{\varXi }_{c_{i,k}}^{T}{\tilde{\varXi }}_{c_{i,k}},\\&({\tilde{\varXi }}_{a_{i,k}}^{T}{\tilde{\varXi }}_{a_{i,k}}) ^{l}\le \ \tau l+\tilde{\varXi }_{a_{i,k}}^{T}{\tilde{\varXi }}_{a_{i,k}},\\&(\tilde{u}_{f_{i}}^2) ^{l}\le \ \tau l+\tilde{u }_{f_{i}}^2. \end{aligned}\right. \end{aligned} \end{aligned}$$
(70)

Remark 3

The above inequalities are based on Lemma 3 and Lemma 4, which are proposed in [40] and are common in the results related to finite-time control. These lemmas are used to ensure that the power of system weight vector errors and the fault observation error meets the requirement of finite-time control.

Further, (68) becomes

$$\begin{aligned} \dot{V}\le&\sum _{i=1}^{Q}\sum _{k=1}^{n}(-2^l\beta _{i,k}(\frac{z_{i,k}^{2}}{2})^l\!-\!\frac{\sigma _{i,k}}{2{ \zeta _{{\varGamma _{i,k}^{-1}}}^{\max }}}({\tilde{\varXi }}_{f_{i,k}}^{T}\varGamma _{i,k}^{-1}{\tilde{\varXi }}_{f_{i,k}})^{l} \\&+\frac{\sigma _{i,k}}{2{\zeta _{{\varGamma _{i,k}^{-1}}}^{\max }}}\tau l\!-\!\frac{ \gamma _{c_{i,k}}}{2}{\zeta _{{S_{{J_{i,k}}}}}^{\min }}({\tilde{\varXi }} _{a_{i,k}}^{T}{\tilde{\varXi }}_{a_{i,k}})^{l}\!+\!\frac{\gamma _{t_i}-1}{2}\tau l\\&-\frac{\gamma _{c_{i,k}}}{2}{\zeta _{{S_{{J_{i,k}}}}}^{\min }}({\tilde{\varXi }} _{c_{i,k}}^{T}{\tilde{\varXi }}_{c_{i,k}})^{l}+\frac{\gamma _{c_{i,k}}}{2}{\zeta _{ {S_{{J_{i,k}}}}}^{\min }}\tau l \\&+\frac{\gamma _{c_{i,k}}}{2}{\zeta _{{S_{{J_{i,k}}}}}^{\min }}\tau l+D_{i} -\frac{\gamma _{t_i}-1}{2}(\tilde{u}_{f_{i}}^2) ^{l})\\ \le&\ a{V^l}+b, \end{aligned}$$

where \(a=\min \{-2^l\beta _{i,k},\frac{\sigma _{i,k}}{2{\zeta _{{\varGamma _{i,k}^{-1}}}^{\max }}}, \frac{\gamma _{c_{i,k}}}{2}{\zeta _{{S_{{J_{i,k}}}}}^{\min }},\frac{\gamma _{t_i}-1}{2}\}\) and \(b=\min \{ \frac{\sigma _{i,k}}{2{\zeta _{{\varGamma _{i,k}^{-1}}}^{\max }}}\tau l, \frac{\gamma _{c_{i,k}}}{2}{\zeta _{{S_{{J_{i,k}}}}}^{\min }}\tau l, D_{i,k},\frac{\gamma _{t_i}-1}{2}\tau l\}\).

Define \(T^R=[V^{1-l}z(0)-([(b/(1-p)a)])^{(1-l)/l}][1/(1-l)pa]\) and \(p\in (0,1)\), then, on the basis of Lemma 2, \(\forall t\ge T^R, V^l\le [b/(1-p)a]\) holds, i.e., all signals in the closed-loop system are SGPFS.

In addition, according to the definition of V in this section, one has

$$\begin{aligned} \Vert {\underline{z}}\Vert \le 2(\frac{b}{(1-p)a})^{\frac{1}{2l}},\ \forall t\ge T^R, \end{aligned}$$

where \({\underline{z}}=[z_{1,1},z_{2,1},\ldots ,z_{Q,1}]^{T}\!\in \! {\mathbb {R}}^{Q}\). Denote \({\underline{y}}\! =\! [y_{1},\ldots ,y_{Q}]^{T}\in {\mathbb {R}}^{N}\) and \({\underline{y}}_{d}=[y_{Q+1,d},\ldots ,y_{Q+P,d}]^{T}\in {\mathbb {R}}^{P}\), then, the following fact holds

$$\begin{aligned} {\underline{z}}={\mathbb {L}}_{1}{\underline{y}}+{\mathbb {L}}_{2}{\underline{y}}_{d} ={\mathbb {L}}_{1}({\underline{y}}+{\mathbb {L}}_{1}^{-1}{\mathbb {L}}_{2}{\underline{y}}_{d}). \end{aligned}$$

Therefore, one gets

$$\begin{aligned} \Vert {\underline{y}}+{\mathbb {L}}_{1}^{-1}{\mathbb {L}}_{2}{\underline{y}}_{d}\Vert \le \frac{\Vert {\underline{z}}\Vert }{ \lambda _{min}({\mathbb {L}}_{1})} \le \frac{2(\frac{b}{(1-p)a})^{\frac{1}{2l}}}{\lambda _{min}({\mathbb {L}}_{1})}, \end{aligned}$$
(71)

where \(\lambda _{min}({\mathbb {L}}_{1})\) represents the minimum eigenvalue of the matrix \({\mathbb {L}}_{1}\). From formula (71), it means that all followers eventually converge to the convex hull space formed by multiple leaders, and the goal of containment control is achieved.

Thus, the proof of Theorem 1 is completed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, J., Pan, Y., Xue, H. et al. Simplified optimized finite-time containment control for a class of multi-agent systems with actuator faults. Nonlinear Dyn 109, 2799–2816 (2022). https://doi.org/10.1007/s11071-022-07586-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07586-1

Keywords

Navigation