Skip to main content
Log in

A mathematically consistent stochastic simulation of a 3D pendulum tuned mass damper and tuning

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This work proposes an Itō calculus-based mathematical framework for the optimal design of a nonlinear passive control arrangement. Traditional numerical methods make use of ordinary differential integration schemes to study such nonlinear systems, thereby failing to account for the stochastic nature of the input excitation. Furthermore, such integration schemes require finer time steps for accurate analysis of stochastically excited nonlinear systems, therefore, rendering these schemes to be computationally expensive. Towards this, the present work proposes a new approach employing stochastic differential calculus for the optimal design of a stochastically excited three-dimensional nonlinear pendulum tuned mass damper (PTMD) system. The proposed approach comprises of Itō-Taylor expansion-based framework for deriving the displacement mean-square response of the primary structure. Three different approaches for the determination of the mean-square response are shown. The first approach is based on numerical simulation by employing Itō-Taylor 1.5 integration scheme and the other two premises on the formulation of Itō-Taylor-based mean-square differential equations. The accurate mean-square response obtained from different approaches is then utilised for the optimal design of the PTMD system. The optimal parameters resulted in amplitude reduction of around 75 % in terms of displacement mean-square response and about 85 % at peak frequency. Further, the optimal parameters were utilised to carry out stability analysis of the nonlinear PTMD system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

Not applicable

References

  1. Den Hartog, J.P.: Mechanical vibrations. Dover Publications, Inc., Mineola, New York (1985)

    MATH  Google Scholar 

  2. Rana, R., Soong, T.: Parametric study and simplified design of tuned mass dampers. Eng. Struct. 20(3), 193–204 (1998)

    Article  Google Scholar 

  3. Warburton, G.B.: Optimum absorber parameters for various combinations of response and excitation parameters. Earthquake Eng. Struct. Dynam. 10(3), 381–401 (1982)

    Article  Google Scholar 

  4. Ghosh, A., Basu, B.: A closed-form optimal tuning criterion for tmd in damped structures. Struct. Control and Health Monitor: Official J. Int. Assoc. Struct. Control and Monitor. Eur. Assoc. Control of Struct. 14(4), 681–692 (2007)

    Article  Google Scholar 

  5. Brock, J.E.: A note on the damped vibration absorber. J. Appl. Mech. 13(4), (1946)

  6. Rüdinger, F.: Optimal vibration absorber with nonlinear viscous power law damping and white noise excitation. J. Eng. Mech. 132(1), 46–53 (2006)

    Article  Google Scholar 

  7. Mishra, S.K., Gur, S., Chakraborty, S.: An improved tuned mass damper (SMA-TMD) assisted by a shape memory alloy spring. Smart Mater. and Struct. 22(9), 095016 (2013)

    Article  Google Scholar 

  8. Tiwari, N.D., Gogoi, A., Hazra, B., Wang, Q.: A shape memory alloy-tuned mass damper inerter system for passive control of linked-SDOF structural systems under seismic excitation. J. Sound Vib. 494, 115893 (2021)

    Article  Google Scholar 

  9. Roffel, A.J., Narasimhan, S., Haskett, T.: Performance of pendulum tuned mass dampers in reducing the responses of flexible structures. J. Struct. Eng. 139(12), 04013019 (2013)

    Article  Google Scholar 

  10. Gerges, R.R., Vickery, B.J.: Optimum design of pendulum-type tuned mass dampers. Struct. Design Tall Spec. Build. 14(4), 353–368 (2005)

    Article  Google Scholar 

  11. Colherinhas, G. Bertollucci., Petrini, F., de Morais, M.V.G., Bontempi, F.: Optimal design of passive-adaptive pendulum tuned mass damper for the global vibration control of offshore wind turbines. Wind Energy 2020, 573–595 (2020)

    Google Scholar 

  12. Soltani,P., Deraemaeker, A.: Pendulum tuned mass dampers and tuned mass dampers: Analogy and optimum parameters for various combinations of response and excitation parameters,. J. Vib. Control (2021)

  13. Viet, L.D.: Partial stochastic linearization of a spherical pendulum with coriolis damping produced by radial spring and damper. J. Vib. Acoustics, Trans. ASME 137(5),(2015)

  14. Roffel, A.J., Lourenco, R., Narasimhan, S., Yarusevych, S.: Adaptive compensation for detuning in pendulum tuned mass dampers. J. Struct. Eng. 137(2), 242–251 (2011)

    Article  Google Scholar 

  15. Gogoi, A., Panda, S., Hazra, B.:A computational framework for mean square responses of bidirectional nonlinear systems under correlated stochastic excitation. J. Sound and Vib., p. 116689, (2022)

  16. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations, vol. 53. Springer, Berlin Heidelberg (1992)

    Book  Google Scholar 

  17. Roy, D., Rao, G.V.: Stochastic dynamics, filtering and optimization. Cambridge University Press, Cambridge, United Kingdom (2017)

    Book  Google Scholar 

  18. Tripura, T., Gogoi, A., Hazra, B.: An Ito-Taylor weak 3.0 method for stochastic dynamics of nonlinear systems. Appl. Math. Model. 86, 115–141 (2020)

    Article  MathSciNet  Google Scholar 

  19. Farshidianfar, A., Soheili, S.: Ant colony optimization of tuned mass dampers for earthquake oscillations of high-rise structures including soil-structure interaction. Soil Dyn. Earthq. Eng. 51, 14–22 (2013)

    Article  Google Scholar 

  20. Bekdaş, G., Nigdeli, S.M.: Estimating optimum parameters of tuned mass dampers using harmony search. Eng. Struct. 33(9), 2716–2723 (2011)

    Article  Google Scholar 

  21. Salvi, J., Rizzi, E.: Minimax optimization of tuned mass dampers under seismic excitation, In: EURODYN 2011: 8th International Conference on Structural Dynamics, Leuven, Belgium, 4-6 (2011)

  22. Hadi, M.N., Arfiadi, Y.: Optimum design of absorber for mdof structures. J. Struct. Eng. 124(11), 1272–1280 (1998)

    Article  Google Scholar 

  23. Bhaiya, V., Bharti, S., Shrimali, M., Datta, T.: Genetic algorithm based optimum semi-active control of building frames using limited number of magneto-rheological dampers and sensors. J. Dyn. Syst. Meas. Contr. 140(10), 101013 (2018)

    Article  Google Scholar 

  24. Särkkä, S., Solin, A.: Applied stochastic differential equations, vol. 10. Cambridge University Press, Cambridge, United Kingdom (2019)

    Book  Google Scholar 

  25. Calin, O.: An Informal Introduction to Stochastic Calculus with Applications. World Scientific Publishing, (2015)

  26. Kloeden, P.E., Platen, E., Schurz, H.: Numerical Solution of SDE Through Computer Experiments. Universitext, Berlin, Heidelberg, Springer, Berlin Heidelberg (2003)

    MATH  Google Scholar 

  27. Higham, D.J.: An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations. SIAM Rev. 43(3), 525–546 (2001)

    Article  MathSciNet  Google Scholar 

  28. Cyganowski, S., Kloeden, P., Ombach, J.: From Elementary Probability to Stochastic Differential Equations with MAPLE®. Universitext, Berlin, Heidelberg, Springer, Berlin Heidelberg (2002)

    Book  Google Scholar 

  29. Meirovitch, L.: Methods of Anal. Dynam. McGraw-Hill, (1970)

  30. Socha, L.: Linearization Methods for Stochastic Dynamic Systems. Springer, (2008)

  31. Roberts,J., Spanos, P. D.: Random Vibration and Statistical Linearization. Dover Civil and Mechanical Engineering, (2003)

  32. Matta, E.: A novel bidirectional pendulum tuned mass damper using variable homogeneous friction to achieve amplitude-independent control, (2019)

  33. Soltani, P., Deraemaeker, A.: Pendulum tuned mass dampers and tuned mass dampers: Analogy and optimum parameters for various combinations of response and excitation parameters. JVC/J. Vib. Control, (2021)

  34. Sun, C., Nagarajaiah, S., Dick, A.J.: Experimental investigation of vibration attenuation using nonlinear tuned mass damper and pendulum tuned mass damper in parallel. Nonlinear Dyn. 78(4), 2699–2715 (2014)

    Article  Google Scholar 

  35. Chin, E., Ólafsson, S., Nel, D.: Problems and Solutions in Mathematical Finance : Stochastic Calculus. John Wiley & Sons Inc., (2014)

  36. Bakre, S.V., Jangid, R.S.: Optimum parameters of tuned mass damper for damped main system. Struct. Control. Health Monit. 14(3), 448–470 (2007)

    Article  Google Scholar 

  37. Ghosh, A., Basu, B.: A closed-form optimal tuning criterion for TMD in damped structures. Struct. Control. Health Monit. 14, 681–692 (2007)

    Article  Google Scholar 

  38. Yan, X., Nie, J.: Response of SMA Superelastic Systems under Random Excitation. J. Sound Vib. 238, 893–901 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

This work was performed as part of the SEMPRE and WindPearl projects. WindPearl was funded by the Sustainable Energy Authority of Ireland (Project number RDD/00263). The authors acknowledge the support of Science Foundation Ireland Centre Marine and Renewable Energy Ireland (MaREI/R2302_2) and NexSys Centre, grant number 21/SPP/3756, and the UCD Centre for Mechanics. Budhaditya Hazra would like to acknowledge the financial support from SERB, DST, under the Project No. IMP/2019/000276.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Budhaditya Hazra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

Some or all code generated or used during the study are available from the corresponding author upon request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Closed form expression results from mean-square derivation

1.1 A.1 Moment derivatives for approaches #2 and #3

Five of the 55 mean-square derivatives are listed here.

  1. 1.
    $$\begin{aligned} \begin{aligned} \frac{d E[y_1^2]}{dt} = 2 E[y_1 y_2] \end{aligned} \end{aligned}$$
  2. 2.
    $$\begin{aligned} \begin{aligned} \frac{d E[y_2^2]}{dt} = \frac{l b_1^2 + 2 m_s h^2 E[y_2 y_8] - 2 c_s l m_s E[y_2^2] - 2 k_s l m_s E[y_1 y_2] + 2 l m_s m_p E[y_2 y_7]}{m_s^2 l^2} \end{aligned} \end{aligned}$$
  3. 3.
    $$\begin{aligned} \begin{aligned} \frac{d E[y_3^2]}{dt}= 2 E[y_3 y_4] \end{aligned} \end{aligned}$$
  4. 4.
    $$\begin{aligned} \begin{aligned} \frac{d E[y_4^2]}{dt} = \frac{l b_2^2 + 2 m_s h^2 E[y_4 y_{10}] - 2 c_s l m_s E[y_4^2] - 2 k_s l m_s E[y_3 y_4] + 2 l m_s m_p E[y_4 y_9]}{m_s^2 l^2} \end{aligned} \end{aligned}$$
  5. 5.
    $$\begin{aligned} \frac{d E[y_1 y_2]}{dt} = \frac{m_s l E[y_2^2] - k_s l E[y_1^2] - c_s l E[y_1 y_2] + h^2 E[y_1 y_8] + m_p l E[y_1 y_7]}{m_s l} \end{aligned}$$
    (44)

1.2 A.2 Moment equations for approaches #2 and #3

The mean-square equations of the structure in the u and v directions is obtained as,

$$\begin{aligned}&\sigma ^2_{\mathrm {num}} = c_s \alpha ^4 g^2+ k_s m_s c^3 h^6+ k_s c^3 h^6 m_p \nonumber \\&\quad + k_s^2 l^2 \alpha ^2 c h^2+ m_s^2 \alpha ^2 c g^2 h^2+ \alpha ^2 c g^2 h^2 m_p^2\nonumber \\&\quad + k_s \alpha ^3 c g h^2+ c_s k_s l \alpha c^2 h^4+ c_s m_s \alpha c^2 g h^4\nonumber \\&\quad + c_s \alpha c^2 g h^4 m_p + c_s^2 l \alpha ^2 c g h^2+ 2 m_s \alpha ^2 c g^2 h^2 m_p\nonumber \\&\quad - 2 k_s l m_s \alpha ^2 c g h^2- 2 k_s l \alpha ^2 c g h^2 m_p \end{aligned}$$
(45)
$$\begin{aligned}&\sigma ^2_{\mathrm {denom}} = c_s^2 \alpha ^4 g^2+ k_s^2 \alpha ^2 c^2 h^4+ c_s k_s m_s c^3 h^6\nonumber \\&\quad + c_s k_s c^3 h^6 m_p + c_s m_s^2 \alpha ^2 c g^2 h^2\nonumber \\&\quad + c_s \alpha ^2 c g^2 h^2 m_p^2+ 2 c_s k_s \alpha ^3 c g h^2+ c_s^2 k_s l \alpha c^2 h^4\nonumber \\&\quad + c_s^3 l \alpha ^2 c g h^2\nonumber \\&\quad + c_s^2 m_s \alpha c^2 g h^4+ c_s^2 \alpha c^2 g h^4 m_p + c_s k_s^2 l^2 \alpha ^2 c h^2\nonumber \\&\quad + 2 c_s m_s \alpha ^2 c g^2 h^2 m_p - 2 c_s k_s l m_s \alpha ^2 c g h^2\nonumber \\&\quad - 2 c_s k_s l \alpha ^2 c g h^2 m_p \end{aligned}$$
(46)
$$\begin{aligned}&\quad \sigma _{2,3}^2 = \frac{b_1^2}{2 k_s} \frac{\sigma ^2_{\mathrm {num}}}{\sigma ^2_{\mathrm {denom}}} \end{aligned}$$
(47)

where \(\alpha = m_pl\), \(u=m_s+m_p\), \(c_s=c_u=c_v=c_w\) and \(k_s=k_u=k_v=k_w\). g is the acceleration due to gravity.

Appendix B Equations of motion of the 2D-PTMD system

This system comprises of the same primary structure as the 3D-PTMD system described in the main body of this article.

Consequently, the kinetic energy, potential energy and dissipation energies can be formulated as,

$$\begin{aligned} V&=\frac{1}{2}m_s\left[ {{\dot{x}}}^2 + {{\dot{y}}}^2 + {{\dot{z}}}^2\right] \\&\quad +\frac{1}{2}m_p\left[ {{\dot{x}}}^2+{{\dot{y}}}^2+{{\dot{z}}}^2+2l{\dot{x}}\cos {\theta }{\dot{\theta }}\right. \\&\quad \left. +2l{\dot{y}}\cos {\varphi }{\dot{\varphi }}+2l{\dot{z}}\left( \sin {\theta }{\dot{\theta }}+\sin {\varphi }{\dot{\varphi }}\right) +l^2{({\dot{\theta }}}^2+{{\dot{\varphi }}}^2) \right] \\ E&=\frac{1}{2}k_s\left[ x^2+y^2+z^2\right] +m_pg\left( z-l\left( \cos {\theta }+\cos {\varphi }\right) \right) \\ R&=\frac{1}{2}c_s\left[ {{\dot{x}}}^2 + {{\dot{y}}}^2 +{{\dot{z}}}^2\right] +\frac{1}{2}ch^2\left( \cos ^2{\theta }{{\dot{\theta }}}^2+\cos ^2{\varphi }{{\dot{\varphi }}}^2\right) \end{aligned}$$

Deriving the equations of motion using Lagrange’s equation leads to,

$$\begin{aligned}&\begin{pmatrix} m_s + m_p &{} 0 &{} 0 &{} m_p l\cos {\theta } &{} 0\\ 0 &{} m_s + m_p &{} 0 &{} 0 &{} m_p l\cos {\varphi }\\ 0 &{} 0 &{} m_s + m_p &{} m_p l\sin {\theta } &{} m_p l\sin {\varphi }\\ m_p l\cos {\theta } &{} 0 &{} m_p l\sin {\theta } &{} m_p l^2 &{} 0\\ 0 &{} m_p l\cos {\varphi } &{} m_p l\sin {\varphi } &{} 0 &{} m_p l^2 \end{pmatrix}\\&\begin{pmatrix} \ddot{x} \\ \ddot{y} \\ \ddot{z} \\ \ddot{\theta } \\ \ddot{\varphi } \end{pmatrix} + \begin{pmatrix} c_u &{} 0 &{} 0 &{} -m_p l\sin {\theta }{\dot{\theta }} &{} 0\\ 0 &{} c_v &{} 0 &{} 0 &{} -m_p l\sin {\varphi }{\dot{\varphi }}\\ 0 &{} 0 &{} c_w &{} m_p l\cos {\theta }{\dot{\theta }} &{} m_p l\cos {\varphi }{\dot{\varphi }}\\ 0 &{} 0 &{} 0 &{} ch^2\cos ^2{\theta } &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} ch^2\cos ^2{\varphi } \end{pmatrix}\\&\begin{pmatrix} {\dot{x}} \\ {\dot{y}} \\ {\dot{z}} \\ {\dot{\theta }} \\ {\dot{\varphi }} \end{pmatrix} + {\mathbf {K}} \begin{pmatrix} x \\ y \\ z \\ \theta \\ \varphi \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ -2m_pg \\ -m_p g l\sin {\theta }\\ -m_p g l \sin {\varphi } \end{pmatrix} \end{aligned}$$
Table 6 Displacement

Note that deriving the SAA simplified version of this system and keeping all terms up to the second-order results in Eq. (33). This signifies that both systems under study have identical behaviours when small angular displacements are considered (Table 6).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mucchielli, P., Gogoi, A., Hazra, B. et al. A mathematically consistent stochastic simulation of a 3D pendulum tuned mass damper and tuning. Nonlinear Dyn 109, 401–418 (2022). https://doi.org/10.1007/s11071-022-07556-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07556-7

Keywords

Navigation