Skip to main content
Log in

Research on the dynamic characteristics of crack damage of a seal-rotor system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In rotor systems, the labyrinth seal system is the core component to suppress fluid leakage between the rotor and the stator. In this paper, based on the finite element method, a dynamic model of a seal-crack rotor system is established by using the Muzynska nonlinear seal force model and the cosine crack stiffness model, and the vibration characteristics of airflow excitation and single-crack and double-crack coupled faults are analyzed. This paper analyzes the vibration characteristics of the coupling of air-induced vibration and a crack fault. First, numerical simulation analysis and test verification were performed on the system response with no sealing force or crack failure. Subsequently, systems with a sealing force and different crack parameters were analyzed for numerical simulation analysis, and then, the influence of crack damage failure on other sealing parameters (including the sealing pressure difference, sealing gap, and sealing length) was studied. Finally, the influence of double-crack damage (damage location, damage degree, phase difference angle) on the rotor system was analyzed. The results show that when the crack depth increases to a certain value, it causes a superharmonic resonance phenomenon in the subcritical speed region of the system. When the system has a sealing force, the airflow excitation frequency of the system can be affected as the degree of crack damage increases. The coupled dynamic response of airflow excitation and crack faults shows a rich spectrum of nonlinear phenomena, which is closely related to the degree of cracks and sealing parameters. Increasing the crack angle weakens the impact of crack damage on the system. This research provides a theoretical basis for detecting and diagnosing crack faults in labyrinth seal-rotor systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15.
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Data availability statement

The raw/processed data required to reproduce these findings cannot be shared at this time, as the data also form part of an ongoing study.

Abbreviations

A x , A y :

Vibration displacement of the system in the X/Y-direction

A s :

Unit cross-sectional area

A ce :

Remaining area of the crack section

C :

Damping matrix of the rotor system

c 1 :

Seal clearance of the seal

D :

Gyro matrix of the rotor system

\({\text{D}}_{\text{d}}^{\text{ m}}\) :

Disk gyro matrix at the m node

D s :

Rotary shaft gyro matrix of the system

D d :

Disk gyro matrix of the system

D f :

Equivalent damping of the sealing force

E :

Young’s modulus of the rotor material

e 1 :

Relative eccentricity of the rotor

F p :

Eccentric force vector

F f :

Sealing force vector

f (t) :

Crack opening and closing function

F fx, F fy :

Component force of sealing force in the x and y directions

f 1, f 2 :

First and second natural frequencies of the rotor system

f f :

Airflow excitation frequency

G :

Gravity vector

G s :

Shear modulus

G n :

Gyro matrix of the shaft unit

h :

Crack depth

h m :

Thickness of the disk

I :

Moment of inertia of the section

J d :

Diameter moment of inertia

J p :

Polar moment of inertia

K :

Stiffness matrix of the rotor system

K f :

Equivalent stiffness of the sealing force

K n :

Stiffness matrix of the shaft element

K s :

Stiffness matrix of the system shaft

K lw c :

Matrix of the stiffness reduction in the crack element

L :

Radius of the sealing disk

l :

Unit length of shaft segment

l m :

Sealing length

M :

Mass matrix of the rotor system

M n :

Mass matrix of shaft element

M s :

Mass matrix of the system shaft

\({\text{M}}_{\text{d}}^{\text{ m}}\) :

Disk mass matrix at the m-th node

M d :

Mass matrix of the system disk

m :

Position number of the disk node

m d :

Quality of the disk

m f :

Equivalent mass of the sealing force

me :

Eccentricity of unbalance mass of the seal disk

n :

Shaft segment number

Q :

Resultant external force vector of the rotor system

R :

Radius of the sealing disk

R m :

Sealing radius

R a :

Reynolds number of axial flow

R v :

Reynolds number of circumferential flow

r g :

Radius of gyration

r m :

Radius of the disk

u n :

Displacement vector of the nth axis segment

v :

Poisson's ratio of the rotor material

v a :

Axial velocity of the air flow

z :

Inlet loss coefficient

α :

Crack angle

ρ :

Material density of the rotor

ϕ :

Transverse shear parameters

ω :

Rotating angular velocity of the rotor

ϑ :

Shear factor

ξ 1, ξ 2 :

Rotor system first and second modal damping ratio

τ :

Average flow velocity ratio in the circumferential direction of the fluid

σ :

Friction loss gradient coefficient

\(\Delta P\) :

Sealing inlet and outlet pressure difference

γ :

Dimensionless crack depth

τω :

Average flow rate ratio in the sealed cavity

µ :

Crack depth ratio

References

  1. Luo, Y.G.: Review and prospect on the research of the labyrinth seal-rotor system. J. Dalian Minzu Univ. 21(01), 6–14 (2019). https://doi.org/10.13744/j.cnki.cn21-1431/g4.2019.01.002

    Article  Google Scholar 

  2. Muszynska, A.: Rotor to stationary element rub-related vibration phenomena in rotating machinery-literature survey. Shock Vib. Digest 21(3), 3–11 (1989)

    Article  Google Scholar 

  3. Wang, W.Z., Liu, Y.Z.: Numercial analysis of leakage flow through two labyrinth seals. J. Hydrodyn. 01, 107–112 (2007)

    Article  Google Scholar 

  4. Cangioli, F., et al.: Effect of energy equation in one control-volume bulk-flow model for the prediction of labyrinth seal dynamic coefficients. Tribol. Int. Mech. Syst. Signal Process. 98(1), 594–612 (2018). https://doi.org/10.1016/j.ymssp.2017.05.017

    Article  Google Scholar 

  5. Kirk, R.G., Guo, Z.: Influence of leak path friction on labyrinth seal inlet swirl. Tribol. Soc. Tribolog. Lubr. Eng. 52, 139–145 (2009)

    Google Scholar 

  6. Hirano, T., Guo, Z., Kirk, R.G.: Application of computational fluid dynamics analysis for rotating machinery: part II- labyrinth seal analysis, Asme Turbo Expo, Collocated with the International Joint Power Generation Conference (2003)

  7. Avza, C., Yblb, C.: Computational analysis for scallop seals with sickle grooves, part II: rotordynamic characteristics. Mech. Syst. Signal Process. (2021). https://doi.org/10.1016/j.ymssp.2020.107154

    Article  Google Scholar 

  8. Subramanian, S., Sekhar, A.S., Prasad, B.V.S.S.S.: Rotordynamic characteristics of rotating labyrinth gas turbine seal with centrifugal growth. Tribol. Int. 97, 349–359 (2016). https://doi.org/10.1016/j.triboint.2016.01.003

    Article  Google Scholar 

  9. Sun, D., Wang, S., Ai, Y.T., et al.: Theoretical and experimental research on the performance of anti-swirl flow for the static and dynamic characteristics of seals. J. Mech. Eng. 52(3), 101 (2016). https://doi.org/10.3901/JME.2016.03.101

    Article  Google Scholar 

  10. Liu, X., Zhang, G., Li, C., et al.: Research on gas leakage pneumatic thermodynamic behavior in the radial labyrinth of scroll compressor. J. Mech. Eng. 51(20), 201 (2015). https://doi.org/10.3901/JME.2015.20.201

    Article  Google Scholar 

  11. Ma, W.S., Huang, H., Feng, G.Q., et al.: Labyrinth seals diameter and length effect study on nonlinear dynamics. Procedia Eng. 99, 1358–1364 (2015). https://doi.org/10.1016/j.proeng.2014.12.670

    Article  Google Scholar 

  12. Shyu, S.H., Chen, Y.W.: Dynamic characteristics of rotor-bearing system with a labyrinth seal. Key Eng. Mater. 739, 169–181 (2017). https://doi.org/10.4028/www.scientific.net/KEM.739.169

    Article  Google Scholar 

  13. Rao, X.B., Chu, Y.D., Chang, Y.X., et al.: Dynamics of a cracked rotor system with oil-film force in parameter space. Nonlinear Dyn. 88(4), 2347–2357 (2017). https://doi.org/10.1007/s11071-017-3381-9

    Article  Google Scholar 

  14. Darpe, A.K., Gupta, K., Chawla, A.: Transient response and breathing behaviour of a cracked Jeffcott rotor. J. Sound Vib. 272(1–2), 207–243 (2004). https://doi.org/10.1016/S0022-460X(03)00327-4

    Article  Google Scholar 

  15. Darpe, A.K.: Dynamics of a Jeffcott rotor with slant crack. J. Sound Vib. 303(1–2), 1–28 (2007). https://doi.org/10.1016/j.jsv.2006.07.052

    Article  Google Scholar 

  16. Patel, T.H., Zuo, M.J., Darpe, A.K.: Vibration response of misaligned rotors. J. Sound Vib. 325(3), 609–628 (2009). https://doi.org/10.1016/j.jsv.2009.03.024

    Article  Google Scholar 

  17. Patela, T.H., Darpe, A.K.: Influence of crack breathing model on nonlinear dynamics of a cracked rotor. J. Sound Vib. 311(3–5), 953–972 (2008). https://doi.org/10.1016/j.jsv.2007.09.033

    Article  Google Scholar 

  18. Szolc, T., Tauzowski, P.: Damage identification in vibrating rotor-shaft systems by efficient sampling approach. Mech. Syst. Signal Process. 23(5), 1615–1633 (2009). https://doi.org/10.1016/j.ymssp.2008.12.007

    Article  Google Scholar 

  19. Lu, Z., Hou, L., Chen, Y., et al.: Nonlinear response analysis for a dual-rotor system with a breathing transverse crack in the hollow shaft. Nonlinear Dyn. 83(1–2), 169–185 (2016). https://doi.org/10.1007/s11071-015-2317-5

    Article  MathSciNet  MATH  Google Scholar 

  20. Han, Q., Chu, F.: The effect of transverse crack upon parametric instability of a rotor-bearing system with an asymmetric disk. Commun. Nonlinear Sci. Numer. Simul. 17(12), 5189–5200 (2012). https://doi.org/10.1016/j.cnsns.2012.03.037

    Article  MATH  Google Scholar 

  21. Han, Q.K., Zhao, J.S., Chu, F.L.: dynamic analysis of a geared rotor system considering a slant crack on the shaft. J. Sound Vib. 331(26), 5803–5823 (2012). https://doi.org/10.1016/j.jsv.2012.07.037

    Article  Google Scholar 

  22. Palacios-Pineda, L.M., Gomez-Mancilla, J.C., et al.: The influence of a transversal crack on rotor nonlinear transient response. Nonlinear Dyn. 90(1), 671–682 (2017). https://doi.org/10.1007/s11071-017-3687-7

    Article  Google Scholar 

  23. Luo, Y.G., Wen, B.C.: Nonlinear response of a double-span rotor system with crack-loose coupling fault. J. Aeronautics Dyn. 26(3), 289–292 (2005). https://doi.org/10.1360/biodiv.050084

    Article  Google Scholar 

  24. Yang, Y.F., Ren, X.M., Qin, W.Y.: Nonlinear response of a loose-crack coupled fault rotor system. Mech. Sci. Technol. 24(8), 3 (2005). https://doi.org/10.3321/j.issn:1003-8728.2005.08.029

    Article  Google Scholar 

  25. Xiang, L., Deng, Z., Hu, A., et al.: Multi-fault coupling study of a rotor system in experimental and numerical analyses. Nonlinear Dyn. 97(4), 2607–2625 (2019). https://doi.org/10.1007/s11071-019-05151-x

    Article  Google Scholar 

  26. Ma, H., Wen, B.C., Tai, X.Y., et al.: Dynamics of Rotating Blade-Casing Systems with Rubbing. The Science Publishing Company, Beijing (2017)

    Google Scholar 

  27. Muszynska, A., Bently, D.E.: Chaotic responses of unbalanced rotor/bearing/stator systems with looseness or rubs. J. Sound Vib. 5(9), 1683–1704 (1995). https://doi.org/10.1016/0960-0779(94)00171-L

    Article  Google Scholar 

  28. Ma, H., Li, H., Niu, H.Q., et al.: Nonlinear dynamic analysis of a rotor-bearing-seal system under two loading conditions. J. Sound Vib. 332(23), 6128–6154 (2013). https://doi.org/10.1016/j.jsv.2013.05.014

    Article  Google Scholar 

  29. Luo, Y., Zhang, S., Wu, B., et al.: Dynamic analysis on nonlinear fluid-structure interaction forces of rub-impact rotor system. Open Mech. Eng. J. 8(1), 480–486 (2014). https://doi.org/10.2174/1874155X01408010480

    Article  Google Scholar 

  30. Li, S.T., Xu, Q.Y., Zhang, X.L.: Nonlinear dynamic behaviors of a rotor-labyrinth seal system. Nonlinear Dyn. 47(4), 321–329 (2006). https://doi.org/10.1007/s11071-006-9025-0

    Article  MATH  Google Scholar 

  31. Mayes, I.W., Davies, W.: Analysis of the response of a multi-rotor-bearing system containing a transverse crack in a rotor. J. Vib. Acoust. 106(1), 139–145 (1984). https://doi.org/10.1115/1.3269142

    Article  Google Scholar 

Download references

Acknowledgements

The project was supported by the Major Program of the National Natural Science Foundation of China (Grant No. 51875085) and the Natural Science Foundation of Liaoning Province, China (Grant No. 20180551073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengchao Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Huang, F., Luo, Y. et al. Research on the dynamic characteristics of crack damage of a seal-rotor system. Nonlinear Dyn 109, 1851–1876 (2022). https://doi.org/10.1007/s11071-022-07537-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07537-w

Keywords

Navigation