Skip to main content
Log in

Families of gap solitons and their complexes in media with saturable nonlinearity and fractional diffraction

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We demonstrate the existence of various types of gap localized modes, including one- and two-dimensional (1D and 2D) single solitons and soliton clusters, as well as the corresponding vortex modes in optical media with saturable Kerr nonlinearity and fractional diffraction. We find that soliton clusters with different number of peaks can be stable in these media. The 1D and 2D localized modes existing at the center of the first and second band gaps are stable, whereas the ones in the peripheries are unstable. In addition, the vortex modes with different number of peaks and vorticity number \(m=1\) are found to be stable, while the ones with \(m\ge 2\) are unstable. The stability of these localized modes is investigated by using the linear stability analysis and is confirmed by the numerical simulation of their dynamical propagation. The obtained results may enrich the understanding of gap solitons and their complexes in media with saturable nonlinearity and fractional diffraction, and may find potential applications in optical information processing and other related fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availibility

analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Kivshar, Y.S., Malomed, B.A.: Dynamics of solitons in nearly integrable systems. Rev. Mod. Phys. 61, 763–915 (1989)

    Article  Google Scholar 

  2. Malomed, B.A., Mihalache, D., Wise, F., Torner, L.: Spatiotemporal optical solitons. J. Opt. B 7, R53–R72 (2005)

    Article  Google Scholar 

  3. Yang, J.: Nonlinear Waves in Integrable and Nonintegrable Systems. SIAM, Philadelphia (2010)

    Book  MATH  Google Scholar 

  4. Kartashov, Y.V., Malomed, B.A., Torner, L.: Solitons in nonlinear lattices. Rev. Mod. Phys. 83, 247–305 (2011)

    Article  Google Scholar 

  5. Chen, Z., Segev, M., Christodoulides, D.N.: Optical spatial solitons: historical overview and recent advances. Rep. Prog. Phys. 75, 086401 (2012)

    Article  Google Scholar 

  6. Leblond, H., Mihalache, D.: Models of few optical cycle solitons beyond the slowly varying envelope approximation. Phys. Rep. 523, 61–126 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Konotop, V.V., Yang, J., Zezyulin, D.A.: Nonlinear waves in \(\cal{PT}\)-symmetric systems. Rev. Mod. Phys. 88, 035002 (2016)

    Article  Google Scholar 

  8. Malomed, B.A., Mihalache, D.: Nonlinear waves in optical and matter-wave media: a topical survey of recent theoretical and experimental results. Rom. J. Phys. 64, 106 (2019)

    Google Scholar 

  9. Kartashov, Y.V., Astrakharchik, G.E., Malomed, B.A., Torner, L.: Frontiers in multidimensional self-trapping of nonlinear fields and matter. Nat. Rev. Phys. 1, 185–197 (2019)

    Article  Google Scholar 

  10. Zeng, L., Konotop, V.V., Lu, X., Cai, Y., Zhu, Q., Li, J.: Localized modes and dark solitons sustained by nonlinear defects. Opt. Lett. 46, 2216–2219 (2021)

    Article  Google Scholar 

  11. Mihalache, D.: Localized structures in optical and matter-wave media: a selection of recent studies. Rom. Rep. Phys. 73, 403 (2021)

    Google Scholar 

  12. Bergé, L.: Wave collapse in physics: principles and applications to light and plasma waves. Phys. Rep. 303, 259–370 (1998)

    Article  MathSciNet  Google Scholar 

  13. Kuznetsov, E.A., Dias, F.: Bifurcations of solitons and their stability. Phys. Rep. 507, 43–105 (2011)

    Article  MathSciNet  Google Scholar 

  14. Fibich, G.: The Nonlinear Schrödinger Equation: Singular Solutions and Optical Collapse. Springer, Heidelberg (2015)

    Book  MATH  Google Scholar 

  15. Fleischer, J.W., Segev, M., Efremidis, N.K., Christodoulides, D.N.: Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices. Nature 422, 147–150 (2003)

    Article  Google Scholar 

  16. Yang, J., Makasyuk, I., Kevrekidis, P.G., Martin, H., Malomed, B.A., Frantzeskakis, D.J., Chen, Z.: Necklacelike solitons in optically induced photonic lattices. Phys. Rev. Lett. 94, 113902 (2005)

    Article  Google Scholar 

  17. Musslimani, Z.H., Makris, K.G., El-Ganainy, R., Christodoulides, D.N.: Optical solitons in \(\cal{PT}\) periodic potentials. Phys. Rev. Lett. 100, 030402 (2008)

    Article  Google Scholar 

  18. Kartashov, Y.V., Vysloukh, V.A., Torner, L.: Soliton shape and mobility control in optical lattices. Prog. Opt. 52, 63–148 (2009)

    Article  Google Scholar 

  19. Lobanov, V.E., Kartashov, Y.V., Konotop, V.V.: Fundamental, multipole, and half-vortex gap solitons in spin–orbit coupled Bose–Einstein condensates. Phys. Rev. Lett. 112, 180403 (2014)

    Article  Google Scholar 

  20. Wimmer, M., Regensburger, A., Miri, M.-A., Bersch, C., Christodoulides, D.N.: Observation of optical solitons in PT-symmetric lattices. Nat. Commun. 6, 7782 (2015)

    Article  Google Scholar 

  21. Kartashov, Y.V., Hang, C., Huang, G., Torner, L.: Three-dimensional topological solitons in \(\cal{PT}\)-symmetric optical lattices. Optica 3, 1048–1055 (2016)

    Article  Google Scholar 

  22. Zezyulin, D.A., Kartashov, Y.V., Skryabin, D.V., Shelykh, I.A.: Spin–orbit coupled polariton condensates in a radially periodic potential: multiring vortices and rotating solitons. ACS Photonics 5, 3634–3642 (2018)

    Article  Google Scholar 

  23. Kartashov, Y.V., Zezyulin, D.A.: Stable multiring and rotating solitons in two-dimensional spin–orbit-coupled Bose–Einstein condensates with a radially periodic potential. Phys. Rev. Lett. 122, 123201 (2019)

    Article  Google Scholar 

  24. Zeng, L., Zeng, J.: Gap-type dark localized modes in a Bose–Einstein condensate with optical lattices. Adv. Photonics 1, 046004 (2019)

    Article  Google Scholar 

  25. Chen, W., Mills, D.L.: Gap solitons and the nonlinear optical response of superlattices. Phys. Rev. Lett. 58, 160–163 (1987)

    Article  Google Scholar 

  26. Mok, J.T., de Sterke, C.M., Littler, I.C.M., Eggleton, B.J.: Dispersionless slow light using gap solitons. Nat. Phys. 2, 775–780 (2006)

    Article  Google Scholar 

  27. Kartashov, Y.V., Konotop, V.V., Abdullaev, F.K.: Gap solitons in a spin–orbit-coupled Bose–Einstein condensate. Phys. Rev. Lett. 111, 060402 (2013)

    Article  Google Scholar 

  28. Smirnova, D.A., Smirnov, L.A., Leykam, D., Kivshar, Y.S.: Topological edge states and gap solitons in the nonlinear Dirac model. Laser Photonics Rev. 13, 1900223 (2019)

    Article  Google Scholar 

  29. Mukherjee, S., Rechtsman, M.C.: Observation of Floquet solitons in a topological bandgap. Science 368, 856–859 (2020)

    Article  Google Scholar 

  30. Borovkova, O.V., Kartashov, Y.V., Torner, L., Malomed, B.A.: Bright solitons from defocusing nonlinearities. Phys. Rev. E 84, 035602(R) (2011)

    Article  Google Scholar 

  31. Driben, R., Kartashov, Y.V., Malomed, B.A., Meier, T., Torner, L.: Soliton gyroscopes in media with spatially growing repulsive nonlinearity. Phys. Rev. Lett. 112, 020404 (2014)

    Article  Google Scholar 

  32. Kartashov, Y.V., Malomed, B.A., Shnir, Y., Torner, L.: Twisted toroidal vortex solitons in inhomogeneous media with repulsive nonlinearity. Phys. Rev. Lett. 113, 264101 (2014)

    Article  Google Scholar 

  33. Driben, R., Dror, N., Malomed, B.A., Meier, T.: Multipoles and vortex multiplets in multidimensional media with inhomogeneous defocusing nonlinearity. New J. Phys. 17, 083043 (2015)

    Article  MATH  Google Scholar 

  34. Kartashov, Y.V., Malomed, B.A., Vysloukh, V.A., Belić, M.R., Torner, L.: Rotating vortex clusters in media with inhomogeneous defocusing nonlinearity. Opt. Lett. 42, 446–449 (2017)

    Article  Google Scholar 

  35. Zeng, L., Zeng, J., Kartashov, Y.V., Malomed, B.A.: Purely Kerr nonlinear model admitting flat-top solitons. Opt. Lett. 44, 1206–1209 (2019)

    Article  Google Scholar 

  36. Christodoulides, D.N., Coskun, T.H.: Multimode incoherent spatial solitons in logarithmically saturable nonlinear media. Phys. Rev. Lett. 80, 2310–2313 (1998)

    Article  Google Scholar 

  37. Desyatnikov, A.S., Mihalache, D., Mazilu, D., Malomed, B.A., Lederer, F.: Stable counter-rotating vortex pairs in saturable media. Phys. Lett. A 364, 231–234 (2007)

    Article  Google Scholar 

  38. Reyna, A.S., Boudebs, G., Malomed, B.A., de Araújo, C.B.: Robust self-trapping of vortex beams in a saturable optical medium. Phys. Rev. A 93, 013840 (2016)

    Article  Google Scholar 

  39. Veretenov, N.A., Rosanov, N.N., Fedorov, S.V.: Rotating and precessing dissipative-optical-topological-3D solitons. Phys. Rev. Lett. 117, 183901 (2016)

    Article  MathSciNet  Google Scholar 

  40. Fedorov, S.V., Veretenov, N.A., Rosanov, N.N.: Control of topology of two-dimensional solitons in a laser with saturable absorption by means of a coherent holding radiation. Opt. Lett. 45, 3284–3287 (2020)

    Article  Google Scholar 

  41. Pang, C., Li, R., Li, Z., Dong, N., Cheng, C., Nie, W., Böttger, R., Zhou, S., Wang, J., Chen, F.: Lithium niobate crystal with embedded au nanoparticles: a new saturable absorber for efficient mode-locking of ultrafast laser pulses at 1 \(\rm \mu m\). Adv. Opt. Mater. 6, 1800357 (2018)

    Article  Google Scholar 

  42. Minardi, S., Cheng, G., D’Amico, C., Stoian, R.: Low-power-threshold photonic saturable absorber in nonlinear chalcogenide glass. Opt. Lett. 40, 257–259 (2015)

    Article  Google Scholar 

  43. McCormick, C.F., Solli, D.R., Chiao, R.Y., Hickmann, J.M.: Saturable nonlinear refraction in hot atomic vapor. Phys. Rev. A 69, 023804 (2004)

    Article  Google Scholar 

  44. Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, 298–305 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  45. Laskin, N.: Fractional quantum mechanics. Phys. Rev. E 62, 3135–3145 (2000)

    Article  MATH  Google Scholar 

  46. Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66, 056108 (2002)

    Article  MathSciNet  Google Scholar 

  47. Laskin, N.: Fractional Quantum Mechanics. World Scientific, Singapore (2018)

    Book  MATH  Google Scholar 

  48. Stickler, B.A.: Potential condensed-matter realization of space-fractional quantum mechanics: the one-dimensional Lévy crystal. Phys. Rev. E 88, 012120 (2013)

    Article  Google Scholar 

  49. Longhi, S.: Fractional Schrödinger equation in optics. Opt. Lett. 40, 1117–1120 (2015)

    Article  Google Scholar 

  50. Zhang, Y., Liu, X., Belić, M.R., Zhong, W., Zhang, Y., Xiao, M.: Propagation dynamics of a light beam in a fractional Schrödinger equation. Phys. Rev. Lett. 115, 180403 (2015)

    Article  Google Scholar 

  51. Zhang, Y., Zhong, H., Belić, M.R., Zhu, Y., Zhong, W., Zhang, Y., Christodoulides, D.N., Xiao, M.: PT symmetry in a fractional Schrödinger equation. Laser Photonics Rev. 10, 526–531 (2016)

    Article  Google Scholar 

  52. Li, P., Li, J., Han, B., Ma, H., Mihalache, D.: PT-symmetric optical modes and spontaneous symmetry breaking in the space-fractional Schrödinger equation. Rom. Rep. Phys. 71, 106 (2019)

    Google Scholar 

  53. Malomed, B.A.: Optical solitons and vortices in fractional media: a mini-review of recent results. Photonics 8, 353 (2021)

    Article  Google Scholar 

  54. Zhong, W., Belić, M.R., Malomed, B.A., Zhang, Y., Huang, T.: Spatiotemporal accessible solitons in fractional dimensions. Phys. Rev. E 94, 012216 (2016)

    Article  Google Scholar 

  55. Zeng, L., Zeng, J.: One-dimensional gap solitons in quintic and cubic–quintic fractional nonlinear Schrödinger equations with a periodically modulated linear potential. Nonlinear Dyn. 98, 985–995 (2019)

    Article  Google Scholar 

  56. Li, P., Malomed, B.A., Mihalache, D.: Vortex solitons in fractional nonlinear Schrödinger equation with the cubic–quintic nonlinearity. Chaos Solitons Fract. 137, 109783 (2020)

    Article  MATH  Google Scholar 

  57. Wang, Q., Liang, G.: Vortex and cluster solitons in nonlocal nonlinear fractional Schrödinger equation. J. Opt. 22, 055501 (2020)

    Article  Google Scholar 

  58. Zeng, L., Zeng, J.: Fractional quantum couplers. Chaos Solitons Fract. 140, 110271 (2020)

    Article  MathSciNet  Google Scholar 

  59. Zeng, L., Shi, J., Lu, X., Cai, Y., Zhu, Q., Chen, H., Long, H., Li, J.: Stable and oscillating solitons of \(\cal{PT}\)-symmetric couplers with gain and loss in fractional dimension. Nonlinear Dyn. 103, 1831–1840 (2021)

    Article  Google Scholar 

  60. Zeng, L., Belić, M.R., Mihalache, D., Wang, Q., Chen, J., Shi, J., Cai, Y., Lu, X., Li, J.: Solitons in spin–orbit-coupled systems with fractional spatial derivatives. Chaos Solitons Fract. 152, 111406 (2021)

    Article  MathSciNet  Google Scholar 

  61. Wang, Q., Deng, Z.Z.: Elliptic solitons in (1+2)-dimensional anisotropic nonlocal nonlinear fractional Schrödinger equation. IEEE Photonics J. 11, 1–8 (2019)

    MathSciNet  Google Scholar 

  62. Zeng, L., Malomed, B.A., Mihalache, D., Cai, Y., Lu, X., Zhu, Q., Li, J.: Bubbles and W-shaped solitons in Kerr media with fractional diffraction. Nonlinear Dyn. 104, 4253–4264 (2021)

    Article  Google Scholar 

  63. Li, P., Malomed, B.A., Mihalache, D.: Metastable soliton necklaces supported by fractional diffraction and competing nonlinearities. Opt. Express 28, 34472–34488 (2020)

    Article  Google Scholar 

  64. Zeng, L., Zeng, J.: Preventing critical collapse of higher-order solitons by tailoring unconventional optical diffraction and nonlinearities. Commun. Phys. 3, 26 (2020)

    Article  Google Scholar 

  65. Li, P., Dai, C.: Double loops and pitchfork symmetry breaking bifurcations of optical solitons in nonlinear fractional Schrödinger equation with competing cubic–quintic nonlinearities. Ann. Phys. (Berlin) 532, 2000048 (2020)

  66. Zeng, L., Zeng, J.: One-dimensional solitons in fractional Schrödinger equation with a spatially periodical modulated nonlinearity: nonlinear lattice. Opt. Lett. 44, 2661–2664 (2019)

    Article  Google Scholar 

  67. Wang, Q., Li, J., Zhang, L., Xie, W.: Hermite-Gaussian-like soliton in the nonlocal nonlinear fractional Schrödinger equation. EPL 122, 64001 (2018)

    Article  Google Scholar 

  68. Qiu, Y., Malomed, B.A., Mihalache, D., Zhu, X., Peng, X., He, Y.: Stabilization of single- and multi-peak solitons in the fractional nonlinear Schrödinger equation with a trapping potential. Chaos Solitons Fract. 140, 110222 (2020)

    Article  Google Scholar 

  69. Zeng, L., Mihalache, D., Malomed, B.A., Lu, X., Cai, Y., Zhu, Q., Li, J.: Families of fundamental and multipole solitons in a cubic–quintic nonlinear lattice in fractional dimension. Chaos Solitons Fract. 144, 110589 (2021)

    Article  MathSciNet  Google Scholar 

  70. Shi, J., Zeng, J.: 1D solitons in saturable nonlinear media with space fractional derivatives. Ann. Phys. (Berlin) 532, 1900385 (2020)

    Article  MathSciNet  Google Scholar 

  71. Li, P., Li, R., Dai, C.: Existence, symmetry breaking bifurcation and stability of two-dimensional optical solitons supported by fractional diffraction. Opt. Express 29, 3193–3210 (2021)

    Article  Google Scholar 

  72. Herink, G., Kurtz, F., Jalali, B., Solli, D.R., Ropers, C.: Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules. Science 356, 50–54 (2017)

    Article  Google Scholar 

  73. Liu, X., Yao, X., Cui, Y.: Real-time observation of the buildup of soliton molecules. Phys. Rev. Lett. 121, 023905 (2018)

    Article  Google Scholar 

  74. Wang, Z.Q., Nithyanandan, K., Coillet, A., Tchofo-Dinda, P., Grelu, P.: Optical soliton molecular complexes in a passively mode-locked fibre laser. Nat. Commun. 10, 830 (2019)

    Article  Google Scholar 

  75. Weng, W., Bouchand, R., Lucas, E., Obrzud, E., Herr, T., Kippenberg, T.J.: Heteronuclear soliton molecules in optical microresonators. Nat. Commun. 11, 2402 (2020)

    Article  Google Scholar 

  76. Kurtz, F., Ropers, C., Herink, G.: Resonant excitation and all-optical switching of femtosecond soliton molecules. Nat. Photonics 14, 9–13 (2020)

    Article  Google Scholar 

  77. Trillo, S., Torruellas, W.: Spatial Solitons. Springer, Berlin (2013)

    Google Scholar 

  78. Chen, M., Zeng, S., Lu, D., Hu, W., Guo, Q.: Optical solitons, self-focusing, and wave collapse in a space-fractional Schrödinger equation with a Kerr-type nonlinearity. Phys. Rev. E 98, 022211 (2018)

    Article  MathSciNet  Google Scholar 

  79. Sinkin, O.V., Holzlöhner, R., Zweck, J., Menyuk, C.R.: Optimization of the split-step Fourier method in modeling optical-fiber communications systems. J. Lightwave Technol. 21, 61–68 (2003)

    Article  Google Scholar 

Download references

Funding

National Major Instruments and Equipment Development Project of National Natural Science Foundation of China (61827815); National Natural Science Foundation of China (12174264, 62075138); Natural Science Foundation of Guangdong Province (2021A1515011909); Science and Technology Project of Shenzhen (JCYJ20190808121817100, JCYJ20190808164007485, JSGG20191231144201722); Natural Science Foundation of Shenzhen University (2019007); Qatar National Research Fund (NPRP-S11-1126-170033).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Milivoj R. Belić or Jingzhen Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 2127 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, L., Belić, M.R., Mihalache, D. et al. Families of gap solitons and their complexes in media with saturable nonlinearity and fractional diffraction. Nonlinear Dyn 108, 1671–1680 (2022). https://doi.org/10.1007/s11071-022-07291-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07291-z

Keywords

Navigation