Skip to main content
Log in

Solitons and rogue wave solutions of focusing and defocusing space shifted nonlocal nonlinear Schrödinger equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we are concerned with the explicit analytic solutions for the focusing and defocusing space shifted nonlocal nonlinear Schrödinger (NLS) equation introduced by Ablowitz and Musskimani (Phys Lett A 409:127516, 2021). The nonsingular N-soliton solutions of the defocusing space shifted nonlocal NLS equation are obtained, while the multi-rogue wave solutions are constructed for focusing space shifted nonlocal NLS equation by Darboux transformation. The asymptotic analysis of the soliton solutions is investigated theoretically and numerically. The dynamic features of first-, second-order RW solutions are analysed explicitly. It shows that the space shift \(x_0\) reveals more general dynamic behaviors in the space shifted nonlocal NLS equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analysed during this study are including in this published article.

References

  1. Kivshar, Y.S., Agrawal, G.P.: Optical solitons: from fibers to photonic crstals. Academic Press, San Diego (2003)

    Google Scholar 

  2. Dalfovo F., Giorgini S., Pitaevskii L.P., etc.: Theor of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999)

  3. Yomosa, S.: Nonlinear Schrödinger equation on the molecular complex in solution: Towards a biophysics. J. Phys. Soc. Jpn. 35, 1738–1746 (1973)

    Article  Google Scholar 

  4. Peregrine, D.H.: Water waves, nonlinear Schrödinger equations and their solutions. J. Aust. Math. Soc. B. 25, 16–43 (1983)

    Article  Google Scholar 

  5. Ma L.Y., Zhang Y.L., Tang L., Shen S.F.: New rational and breather solutions of a higher-order integrable nonlinear Schrödinger equation. Appl. Math. Lett. 25, 122 107539 (2021)

  6. Ablowitz, M.J., Segur, H.: Solitons and inverse scattering transfor. SIAM, Philadelphia, PA (1981)

    Book  Google Scholar 

  7. Matveev, V.B., Salle, M.A.: Darboux transformations and solitons. Springer, Berlin (1991)

    Book  Google Scholar 

  8. Levi, D.: On a new Darboux transformation for the construction of exact solutions of the Schrödinger equation. Inverse Probl. 4, 165–172 (1988)

    Article  Google Scholar 

  9. Gu, C.H., Zhou, Z.X.: On Darboux transformations for soliton equations in high-dimensional spacetime. Lett. Math. Phys. 32, 1–10 (1994)

    Article  MathSciNet  Google Scholar 

  10. Yang, J., Zhang, Y.L., Ma, L.Y.: Multi-rogue wave solutions for a generalized integrable discrete nonlinear Schrödinger equation with higher-order excitations. Nonlinear Dyn. 105, 629–641 (2021)

    Article  Google Scholar 

  11. Hirota, R.: Direct Methods in Soliton Theory. Springer-Verlag, Berlin (2004)

    Book  Google Scholar 

  12. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear Schrödinger equation. Phys. Rev. Lett. 110, 064105 (2013)

    Article  Google Scholar 

  13. Li, M., Xu, T.: Dark and antidark soliton interactions in the nonlocal nonlinear Schrödinger equation with the self-induced parity-time-symmetric potential. Phys. Rev. E 91, 033202 (2015)

    Article  MathSciNet  Google Scholar 

  14. Yang, B., Yang, J.: Rogue wave in the nonlocal \(\cal{PT}\)-symmetric nonlinear Schrödinger equation. Lett. Math. Phys. 109, 945–973 (2019)

    Article  MathSciNet  Google Scholar 

  15. Gadzhimuradov, T.A., Agalarov, A.M.: Towards a gauge-equivalent magnetic structure of the nonlocal nonlinear Schrödinger equation. Phys. Rev. E 93, 062124 (2016)

    Article  Google Scholar 

  16. Ma, L.Y., Zhu, Z.Z.: Nonlocal nonlinear Schrödinger equation and its discrete version: soliton solutions and gauge equivalence. J. Math. Phys. 57, 083507 (2016)

    Article  MathSciNet  Google Scholar 

  17. Ablowitz, M.J., Musslimani, Z.H.: Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation. Nonlinearity 29, 915–946 (2016)

    Article  MathSciNet  Google Scholar 

  18. Huang, X., Ling, L.: Soliton solutions for the nonlocal nonlinear Schrödinger equation. Eur. Phys. J. Plus 131, 148 (2016)

    Article  Google Scholar 

  19. Gerdjikov, V.S., Saxena, A.: Complete integrability of nonlocal nonlinear Schrödinger equation. J. Math. Phys. 58, 013502 (2017)

    Article  MathSciNet  Google Scholar 

  20. Ma, L.Y., Shen, S.F., Zhu, Z.N.: Soliton solution and gauge equivalence for an integrable nonlocal complex modified Korteweg-de Vries equation. J. Math. Phys. 58, 103501 (2017)

    Article  MathSciNet  Google Scholar 

  21. Ji, J.L., Zhu, Z.Z.: Soliton solutions of an integrable nonlocal modified Korteweg-de Vries equation through inverse scattering transform. J. Math. Anal. 453, 973–984 (2017)

  22. Li, L., Duan, C., Yu, F.: An improved Hirota bilinear method and new application for a nonlocal integrable complex modified Korteweg-de Vries (MKdV) equation. Phys. Lett. A 383, 1578–1582 (2019)

    Article  MathSciNet  Google Scholar 

  23. Zhang, G., Yan, Z.: Inverse scattering transforms and soliton solutions of focusing and defocusing nonlocal mKdV equations with non-zero boundar conditions. Phys. D 402, 132170 (2020)

    Article  MathSciNet  Google Scholar 

  24. Song, C.Q., Xiao, D.M., Zhu, Z.N.: Reverse space-time nonlocal Sasa-Satsuma equation and its solutions. J. Phys. Soc. Jpn. 86, 054001 (2017)

    Article  Google Scholar 

  25. Ma, L.Y., Zhao, H.Q., Gu, H.: Integrability and gauge equivalence of the reverse space-time nonlocal Sasa-Satsuma equation. Nonlinear Dn. 91, 1909–1920 (2018)

    Article  Google Scholar 

  26. Rao, J., Cheng, Y., He, J.S.: Rational and semirational solutions of the nonlocal Davey-Stewartson equations. Stud. Appl. Math. 4(139), 568–598 (2017)

    Article  MathSciNet  Google Scholar 

  27. Liu, Y., Mihalache, D., He, J.: Families of rational solutions of the y-nonlocal Davey-Stewartson II equation. Nonlinear Dyn. 2017, 2445–2455 (2017)

    Article  MathSciNet  Google Scholar 

  28. Rao, J., Zhang, Y., Fokas, A.S., He, J.S.: Rogue waves of the nonlocal Davey-Stewartson I equation. Nonlinearity 31, 4090–4107 (2018)

    Article  MathSciNet  Google Scholar 

  29. Zhou, Z.X.: Darboux Transformations and global explicit solutions for nonlocal Davey-Stewartson I Equation. Stud. Appl. Math. 141, 186–204 (2018)

    Article  MathSciNet  Google Scholar 

  30. Ablowitz, M.J., Musslimani, Z.H.: Integrable discrete PT symmetric model. Phys. Rev. E 90, 032912 (2014)

    Article  Google Scholar 

  31. Ablowitz, M.J., Musslimani, Z.H.: Integrable space-time shifted nonlocal nonlinear equations. Phys. Rev. A 409, 127516 (2021)

    MathSciNet  MATH  Google Scholar 

  32. Gürses, M., Pekcan, A.: Soliton solutions of the shifted nonlocal NLS and MKdV equations. Phys. Lett. A 422, 127793 (2022)

    Article  MathSciNet  Google Scholar 

  33. Yang B., Yang J.K.: Transformations between nonlocal and local integrable equations. Stud. Appl. Math. 140, 178–201 (2017)

Download references

Acknowledgements

The work of JY is supported by National Natural Science Foundation of China under Grant No.12001361, Young Teachers Training Assistance Program of Shanghai under Grant No. ZZEGDD20005, that of LYM by National Natural Science Foundation of China under Grant No.11701510.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Yuan Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The second-order RW solutions of (16) are expressed in details as follows

$$\begin{aligned} q^{[2]}(x,t)=e^{-2it}\left( 1+2i\frac{\tau _{1,2}^{(1)}}{\tau _{0,2}^{(1)}}\right) , \end{aligned}$$
(20)

where

$$\begin{aligned} \tau _{1,2}^{(1)}=&\frac{1}{24}(-1280it^4-1024t^5\\&-128t^3(1+(-2x+x_{0})^2) \\&-96it^2(3+(-2x+x_{0})^2)\\ {}&-4t(-15+(-2x+x_{0})^2(-6\\&+(-2x+x_{0})^2))-i(-3+(-2x+x_{0})^2\\&(6+(-2x+x_{0})^2)) \\&-4r_{0}^3(4t+i(1+2x-x_{0})-2s_{0})^2-6r_{1}(4t\\&+i(1+2x-x_{0})-2s_{0})^2\\&-9s_{0}+96its_{0}+1280it^3s_{0} \\&+1280t^4s_{0}+24xs_{0}+96itxs_{0}\\&+384t^2xs_{0}-512it^3xs_{0}\\&+192itx^2s_{0}+384t^2x^2s_{0}+32x^3s_{0}\\&-128itx^3s_{0}+16x^4s_{0} \\&-12x_{0}s_{0}-48itx_{0}s_{0}-192t^2x_{0}s_{0}+256it^3x_{0}s_{0}\\&-192itxx_{0}s_{0}-384t^2xx_{0}s_{0}\\&-48x^2x_{0}s_{0}+192itx^2x_{0}s_{0}\\&-32x^3x_{0}s_{0}+48itx_{0}^2s_{0}+96t^2x_{0}^2s_{0}+24xx_{0}^2s_{0}\\&-96itxx_{0}^2s_{0}+24x^2x_{0}^2s_{0}-4x_{0}^3s_{0}\\&+16itx_{0}^3s_{0}-8xx_{0}^3s_{0}+x_{0}^4s_{0}\\&-384it^2s_{0}^2-512t^3s_{0}^2-192txs_{0}^2+384it^2xs_{0}^2\\&+32ix^3s_{0}^2+96tx_{0}s_{0}^2-192it^2x_{0}s_{0}^2 \\&-48ix^2x_{0}s_{0}^2+24ixx_{0}^2s_{0}^2-4ix_{0}^3s_{0}^2\\&-4s_{0}^3+32its_{0}^3+64t^2s_{0}^3+16xs_{0}^3\\&-64itxs_{0}^3-16x^2s_{0}^3-8x_{0}s_{0}^3+32itx_{0}s_{0}^3\\&+16xx_{0}s_{0}^3-4x_{0}^2s_{0}^3\\&-4r_{0}^2((4t+2ix-ix_{0})(32t^2+4it(6+2x-x_{0})\\&+(-2x+x_{0})^2)+s_{0}(-3(-1+48t^2\\&-4x+8it(3+2x-x_{0})\\&+2x_{0}+(-2x+x_{0})^2)+4(3i+12t-s_{0})s_{0})\\&-6s_{1})-6s_{1}+6(4t-2ix+ix_{0})\\&(4t+i(2-2x+x_{0}))s_{1}\\&+r_{0}(-1280t^4-96t^2(-2+2x-x_{0})(2x-x_{0})\\&-256it^3(5+2x-x_{0})\\&-(-3+4x^2-4x(2+x_{0})\\&+x_{0}(4+x_{0}))(3+(-2x+x_{0})^2)-16it(6+8x^3\\&-12x^2(-1+x_{0})+x_{0}(3-(-3+x_{0})x_{0})\\&+6x(-1+(-2+x_{0})x_{0}))\\&+24(i+4t)(1+8t(i+2t)\\&+(-2x+x_{0})^2)s_{0}-12\\&(-1+48t^2+4x-8it(-3+2x-x_{0})\\&-2x_{0}+(-2x+x_{0})^2)s_{0}^2\\&+16(4t+i(1-2x+x_{0}))s_{0}^3\\&+24(4t+i(1-2x+x_{0}))s_{1})),\\ \tau _{0,2}^{(1)}&=\frac{1}{144}(-9(1+12x^2)-16(256t^6+x^4(3+4x^2)\\&+48t^4(9+4x^2)+t^2(99-72x^2+48x^4))\\&+12x((3-16t^2)^2\\&+8(1+16t^2)x^2+16x^4)x_{0}\\&-3((3-16t^2)^2+24(1+16t^2)x^2+80x^4)\\&x_{0}^2+8x(3+48t^2+20x^2)x_{0}^3\\&-3(1+16t^2+20x^2)x_{0}^4+12xx_{0}^5-x_{0}^6\\&-8r_{0}^3(64t^3+48it^2(2x-x_{0})\\&-12t(-3+(-2x+x_{0})^2)\\&-i(2x-x_{0})(-3+(-2x+x_{0})^2)+2s_{0}\\&(-3(4t+i(-1+2x-x_{0}))(4t+i(1+2x-x_{0}))\\&+2(12t+6ix-3ix_{0}-2s_{0})s_{0})-12s_{1})\\&-12r_{1}(64t^3+48it^2(2x-x_{0})\\&-12t(-3+(-2x+x_{0})^2)\\&-i(2x-x_{0})(-3+(-2x+x_{0})^2)+2s_{0}\\&(-3(4t+i(-1+2x-x_{0}))\\&(4t+i(1+2x-x_{0}))+2(12t\\&+6ix-3ix_{0}-2s_{0})s_{0})-12s_{1})\\&-12r_{0}^2(192t^2+256t^4+128it^3(2x-x_{0})\\&+8it(2x-x_{0})^3-(-2x+x_{0})^4\\&-6(64t^3+16it^2(2x-x_{0})\\&+i(2x-x_{0})(1+(-2x+x_{0})^2)\\&+4t(3+(-2x+x_{0})^2))s_{0}+12(1+16t^2\\&+(-2x +x_{0})^2)s_{0}^2-8(4t-2ix+ix_{0})s_{0}^3\\&-12(4t-2ix+ix_{0})s_{1})\\&+2(3(1024t^5-9i(2x-x_{0})-256it^4(2x-x_{0})\\&-32it^2(2x-x_{0})(-3+(-2x+x_{0})^2)\\&-i(2x-x_{0})^3(2+(-2x+x_{0})^2)\\&+128t^3(8+(-2x+x_{0})^2)+4t(15\\&+(-2x+x_{0})^4))s_{0}-6(192t^2\\&+256t^4-128it^3(2x-x_{0})\\&-8it(2x-x_{0})^3-(-2x+x_{0})^4)s_{0}^2+4(64t^3\\&-48it^2(2x-x_{0})-12t(-3+(-2x+x_{0})^2)\\&+i(2x-x_{0})(-3+(-2x+x_{0})^2))s_{0}^3\\&+6(64t^3-48it^2(2x-x_{0})\\&-12t(-3+(-2x+x_{0})^2)+i(2x-x_{0})\\&(-3+(-2x+x_{0})^2))s_{1})\\&-6r_{0}(1024t^5+9i(2x-x_{0})+256it^4(2x-x_{0})\\&+32it^2(2x-x_{0})(-3+(-2x+x_{0})^2)\\&+i(2x-x_{0})^3(2+(-2x+x_{0})^2)\\&+128t^3(8+(-2x+x_{0})^2)+4t(15\\&+(-2x+x_{0})^4)-12s_{1}\\&+2(-3(3+256t^4+(-2x+x_{0})^2 \\&(2+(-2x+x_{0})^2)+32t^2(3+(-2x+x_{0})^2))s_{0}\\&+6(64t^3-16it^2(2x-x_{0})-i(2x-x_{0})\\&(1+(-2x+x_{0})^2)+4t(3+(-2x+x_{0})^2))s_{0}^2\\&-4(4t-i(1+2x-x_{0}))(4t+i(1-2x+x_{0}))\\&s_{0}^3-6(4t-2ix+ix_{0})^2s_{1}))). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Song, HF., Fang, MS. et al. Solitons and rogue wave solutions of focusing and defocusing space shifted nonlocal nonlinear Schrödinger equation. Nonlinear Dyn 107, 3767–3777 (2022). https://doi.org/10.1007/s11071-021-07147-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07147-y

Keywords

Navigation