Skip to main content
Log in

Truncated predictor stabilization control for interconnected nonlinear systems with time-varying input delay

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper deals with control design for interconnected nonlinear systems with time-varying input delay. Based on the truncated prediction of the system state over the delay period, the state feedback control law is constructed. In the framework of the Lyapunov–Krasovskii function, the stability equations of closed-loop system under state feedback law are established, and the feasibility of the controller is transformed into the problem of establishing a set of linear matrix inequality (LMI) conditions. Based on the Lyapunov stability theorem, it is proved that the closed-loop system is asymptotically stable. Finally, a simulation example is provided to demonstrate the effectiveness of the control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

The datasets supporting the conclusions of this article are included within the article.

References

  1. Sharma, S.K., Kumar, A.: Disturbance rejection and force-tracking controller of nonlinear lateral vibrations in passenger rail vehicle using magnetorheological fluid damper. J. Intell. Mater. Syst. Struct. 29(2), 279–297 (2018)

    Article  Google Scholar 

  2. Sharma, S.K., Kumar, A.: Ride comfort of a higher speed rail vehicle using a magnetorheological suspension system. Proc. Inst. Mech. Eng. Part K: J. Multi-body Dyn. 232(1), 32–48 (2018)

    Article  Google Scholar 

  3. Sharma, S.K., Saini, U., Kumar, A.: Semi-active control to reduce lateral vibration of passenger rail vehicle using disturbance rejection and continuous state damper controllers. J. Vib. Eng. Technol. 7(2), 117–129 (2019)

    Article  Google Scholar 

  4. Sharma, S.K., Kumar, A.: Ride performance of a high speed rail vehicle using controlled semi active suspension system. Smart Mater. Struct. 26(5), 055026 (2017)

    Article  MathSciNet  Google Scholar 

  5. Yan, X.G., Wang, J.J., Lu, X.Y., Zhang, S.Y.: Decentralized output feedback robust stabilization for a class of nonlinear interconnected systems with similarity. IEEE Trans. Autom. Control 43(2), 294–299 (1998)

    Article  MathSciNet  Google Scholar 

  6. Zhu, B., Zhang, Q., Zhang, X.: Decentralized robust guaranteed cost control for uncertain TS fuzzy interconnected systems with time delays. Int. J. Inf. Syst. Sci. 1(1), 73–88 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Wen, C.: Decentralized adaptive regulation. IEEE Trans. Autom. Control 39(10), 2163–2166 (1994)

    Article  MathSciNet  Google Scholar 

  8. Jiang, Z.P.: Decentralized disturbance attenuating output-feedback trackers for large-scale nonlinear systems. Automatica 38(8), 1407–1415 (2002)

    Article  MathSciNet  Google Scholar 

  9. Liu, S.J., Zhang, J.F., Jiang, Z.P.: Decentralized adaptive output-feedback stabilization for large-scale stochastic nonlinear systems. Automatica 43(2), 238–251 (2007)

    Article  MathSciNet  Google Scholar 

  10. Wen, C., Zhou, J., Wang, W.: Decentralized adaptive backstepping stabilization of interconnected systems with dynamic input and output interactions. Automatica 45(1), 55–67 (2009)

    Article  MathSciNet  Google Scholar 

  11. Zhang, X., Lin, Y.: Nonlinear decentralized control of large-scale systems with strong interconnections. Automatica 50(9), 2419–2423 (2014)

    Article  MathSciNet  Google Scholar 

  12. Chen, B., Liu, X., Liu, K., Lin, C.: Novel adaptive neural control design for nonlinear MIMO time-delay systems. Automatica 45(6), 1554–1560 (2009)

    Article  MathSciNet  Google Scholar 

  13. Yoo, S.J., Park, J.B.: Neural-network-based decentralized adaptive control for a class of large-scale nonlinear systems with unknown time-varying delays. IEEE Trans. Syst. Man Cybern. Part B Cybern. 39(5), 1316–1323 (2009)

    Article  Google Scholar 

  14. Zhang, X., Lin, W., Lin, Y.: Nonsmooth feedback control of time-delay nonlinear systems: a dynamic gain based approach. IEEE Trans. Autom. Control 62(1), 438–444 (2016)

    Article  MathSciNet  Google Scholar 

  15. Zhang, X., Lin, Y.: Global stabilization of high-order nonlinear time-delay systems by state feedback. Syst. Control Lett. 65, 89–95 (2014)

    Article  MathSciNet  Google Scholar 

  16. Polyakov, A., Efimov, D., Perruquetti, W., Richard, J.P.: Implicit Lyapunov–Krasovski functionals for stability analysis and control design of time-delay systems. IEEE Trans. Autom. Control 60(12), 3344–3349 (2015)

    Article  MathSciNet  Google Scholar 

  17. Hua, C., Wang, Q.G., Guan, X.: Robust adaptive controller design for nonlinear time-delay systems via T-S fuzzy approach. IEEE Trans. Fuzzy Syst. 17(4), 901–910 (2008)

    Google Scholar 

  18. Jankovic, M.: Control Lyapunov–Razumikhin functions and robust stabilization of time delay systems. IEEE Trans. Autom. Control 46(7), 1048–1060 (2001)

    Article  MathSciNet  Google Scholar 

  19. Hua, C., Guan, X., Shi, P.: Robust stabilization of a class of nonlinear time-delay systems. Appl. Math. Comput. 155(3), 737–752 (2004)

    MathSciNet  MATH  Google Scholar 

  20. Oucheriah, S.: Decentralized adaptive control for a class of large-scale systems with multiple delays in the interconnections. Int. J. Adapt. Control Signal Process. 19(1), 1–11 (2005)

    Article  Google Scholar 

  21. Lakshmanan, S., Senthilkumar, T., Balasubramaniam, P.: Improved results on robust stability of neutral systems with mixed time-varying delays and nonlinear perturbations. Appl. Math. Modell. 35(11), 5355–5368 (2011)

    Article  MathSciNet  Google Scholar 

  22. Ge, S.S., Hong, F., Lee, T.H.: Adaptive neural network control of nonlinear systems with unknown time delays. IEEE Trans. Autom. Control 48(11), 2004–2010 (2003)

    Article  MathSciNet  Google Scholar 

  23. Chen, W., Li, J.: State feedback control for stochastic nonlinear systems with unknown time delay. In: 2006 6th World Congress on Intelligent Control and Automation, vol. 1, pp. 848–852. IEEE (2006)

  24. Zhou, B.: Pseudo-predictor feedback stabilization of linear systems with time-varying input delays. Automatica 50(11), 2861–2871 (2014)

    Article  MathSciNet  Google Scholar 

  25. Pyrkin, A.A., Bobtsov, A.A.: Adaptive controller for linear system with input delay and output disturbance. IEEE Trans. Autom. Control 61(12), 4229–4234 (2015)

    Article  MathSciNet  Google Scholar 

  26. Zhou, B., Lin, Z., Duan, G.R.: Truncated predictor feedback for linear systems with long time-varying input delays. Automatica 48(10), 2387–2399 (2012)

    Article  MathSciNet  Google Scholar 

  27. Ding, Z., Lin, Z.: Truncated state prediction for control of Lipschitz nonlinear systems with input delay. Proc. IEEE Conf. Decis. Control 2015, 1966–1971 (2015)

    Google Scholar 

  28. Wang, C., Zuo, Z., Lin, Z., Ding, Z.: Consensus control of a class of Lipschitz nonlinear systems with input delay. IEEE Trans. Circuits Syst. I: Regul. Pap. 62(11), 2730–2738 (2014)

    Article  MathSciNet  Google Scholar 

  29. Choi, J.-Y., Krstic, M.: Compensation of time-varying input delay for nonlinear systems. Int. J. Robust Nonlinear Control 26, 1755–1776 (2011)

  30. Krstic, M.: Input delay compensation for forward complete and strict-feedforward nonlinear systems. IEEE Trans. Autom. Control 55(2), 287–303 (2009)

    Article  MathSciNet  Google Scholar 

  31. Hua, C., Li, K., Guan, X.: Event-based dynamic output feedback adaptive fuzzy control for stochastic nonlinear systems. IEEE Trans. Fuzzy Syst. 26(5), 3004–3015 (2018)

    Article  Google Scholar 

  32. Gu, K.: An integral inequality in the stability problem of time-delay systems. In: Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No. 00CH37187), vol. 3, pp. 2805–2810. IEEE (2000)

  33. Hua, C., Guan, X., Shi, P.: Robust backstepping control for a class of time delayed systems. IEEE Trans. Autom. Control 50(6), 894–899 (2005)

    Article  MathSciNet  Google Scholar 

  34. Yoo, S.J., Park, J.B.: Decentralized adaptive output-feedback control for a class of nonlinear large-scale systems with unknown time-varying delayed interactions. Inf. Sci. 186(1), 222–238 (2012)

  35. Zhang, X., Liu, L., Feng, G., Zhang, C.: Output feedback control of large-scale nonlinear time-delay systems in lower triangular form. Automatica 49(11), 3476–3483 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported in part by the National Key R&D Program of China (2018YFB1308302), in part by the National Natural Science Foundation of China (61803326, 62103353, 61825304 and 6182500417), in part by the Innovative Research Groups of the Natural Science Foundation of Hebei Province (E2020203174), in part by the Top Young Talents of Science and Technology Program of Higher Education Department of Hebei Province (BJ2021041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liuliu Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Liu, S. & Hua, C. Truncated predictor stabilization control for interconnected nonlinear systems with time-varying input delay. Nonlinear Dyn 107, 2421–2428 (2022). https://doi.org/10.1007/s11071-021-07126-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07126-3

Keywords

Navigation