Skip to main content
Log in

Study of the generalization of regularized long-wave equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A generalization of the regularized long-wave equation is considered, and the existences of smooth soliton, peakon, and periodic solutions are established via the complete discrimination system for polynomial method and the bifurcation method. Concrete examples of these solutions are constructed to verify our conclusions directly. In particular, we construct a special kind of smooth soliton solution, namely a Gaussian soliton solution, and give two sufficient conditions for the existence of such a solution by the extended trial equation method. To the best of our knowledge, this is the first time that a Gaussian soliton solution has been constructed for an equation with no logarithmic nonlinearity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

My manuscript has no associated data.

References

  1. Biswas, A., Milovic, D., Ranasinghe, A.: Solitary waves of Boussinesq equation in a power law media. Commun. Nonlinear Sci. Numer. Simul. 14(11), 3738–3742 (2009)

    Article  Google Scholar 

  2. Dehghan, M., Salehi, R.: A meshless based numerical technique for traveling solitary wave solution of Boussinesq equation. Appl. Math. Model. 36(5), 1939–1956 (2012)

    Article  MathSciNet  Google Scholar 

  3. Liu, C.S.: Classification of all single travelling wave solutions to Calogero–Degasperis–Focas equation. Commun. Theor. Phys. 48(4), 601 (2007)

    Article  MathSciNet  Google Scholar 

  4. Liu, C.S.: All single traveling wave solutions to (3+1)-Dimensional Nizhnok–Novikov–Veselov equation. Commun. Theor. Phys. 45(6), 991–992 (2006)

    Article  MathSciNet  Google Scholar 

  5. Liu, C.S.: Applications of complete discrimination system for polynomial for classifications of traveling wave solutions to nonlinear differential equations. Comput. Phys. Commun. 181(2), 317–324 (2010)

    Article  MathSciNet  Google Scholar 

  6. Liu, C.S.: Trial equation method and its applications to nonlinear evolution equations. Acta Physica Sinica 54(6), 2505–2509 (2005)

    Article  MathSciNet  Google Scholar 

  7. Liu, C.S.: Trial equation method to nonlinear evolution equations with rank inhomogeneous: mathematical discussions and its applications. Commun. Theor. Phys. 45(2), 219–223 (2006)

    Article  Google Scholar 

  8. Liu, C.S.: Trial equation method based on symmetry and applications to nonlinear equations arising in mathematical physics. Found. Phys. 41(5), 793–804 (2011)

    Article  MathSciNet  Google Scholar 

  9. Liu, W.J., Tian, B., Zhang, H.Q., et al.: Soliton interaction in the higher-order nonlinear Schrödinger equation investigated with Hirota’s bilinear method. Phys. Rev. E 77(6), 066605 (2008)

  10. Zloshchastiev, K.G., Znojil, M.: Logarithmic wave equation: origins and applications. Vsnik Dnpropetrovskogo unversitetu Sera Fzika, Radoelektronika 23(2), 101–107 (2016)

    Google Scholar 

  11. James, G., Pelinovsky, D.: Gaussian solitary waves and compactons in Fermi–Pasta–Ulam lattices with Hertzian potentials. Proc. R. Soc. A Math. Phys. Eng. Sci. 470(2165), 20130462 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Bialynicki-Birula, I., Mycielski, J.: Gaussons: solitons of the logarithmic Schrödinger equation. Physica Scripta 20(3–4), 539–544 (1979)

    Article  MathSciNet  Google Scholar 

  13. Wazwaz, A.M., El-Tantawy, S.A.: Gaussian soliton solutions to a variety of nonlinear logarithmic Schrödinger equation. J. Electromagn. Waves Appl. 30(14), 1909–1917 (2016)

    Article  Google Scholar 

  14. Wazwaz, A.M.: Gaussian solitary waves for the logarithmic Boussinesq equation and the logarithmic regularized Boussinesq equation. Ocean Eng. 94, 111–115 (2015)

    Article  Google Scholar 

  15. Wazwaz, A.M.: Gaussian solitary wave solutions for nonlinear evolution equations with logarithmic nonlinearities. Nonlinear Dyn. 83(1–2), 591–596 (2016)

    Article  MathSciNet  Google Scholar 

  16. Liu, C.S.: Two model equations with a second degree logarithmic nonlinearity and their Gaussian solutions. Commun. Theor. Phys. 73(4), 045007 (2021)

    Article  MathSciNet  Google Scholar 

  17. Liu, C.S.: The Gaussian soliton in the Fermi–Pasta–Ulam chain. Nonlinear Dyn. 106(1), 899–905 (2021)

    Article  Google Scholar 

  18. Darvishi, M.T., Najafi, M.: Some extensions of Zakharov–Kuznetsov equations and their Gaussian solitary wave solutions. Phys. Scripta 93(8), 085204 (2018)

    Article  Google Scholar 

  19. Wang, X., Chen, Y., Yang, Y., et al.: Kirchhoff-type system with linear weak damping and logarithmic nonlinearities. Nonlinear Anal. 188, 475–499 (2019)

    Article  MathSciNet  Google Scholar 

  20. Biswas, A., Ekici, M., Sonmezoglu, A.: Gaussian solitary waves to Boussinesq equation with dual dispersion and logarithmic nonlinearity. Nonlinear Anal. Model. Control 23(6), 942–950 (2018)

    Article  MathSciNet  Google Scholar 

  21. Constantin, A., Lannes, D.: The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations. Arch. Ration. Mech. Anal. 192(1), 165–186 (2009)

    Article  MathSciNet  Google Scholar 

  22. Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71(11), 1661 (1993)

    Article  MathSciNet  Google Scholar 

  23. Degasperis, A., Giuseppe, G.: Symmetry and Perturbation Theory: Spt 98. World Scientific, Singapore (1999)

  24. Kordeweg, D.J., de Vries, G.: On the change of form of long waves advancing in a rectangular channel, and a new type of long stationary wave. Phil. Mag. 39, 422–443 (1895)

    Article  Google Scholar 

  25. Cao, C.W.: A qualitative test for single soliton solution. J. Zhengzhou Univ. Nat. Sci. Ed. 2, 3–7 (1984)

    Google Scholar 

  26. Kai, Y., Chen, S., Zhang, K., et al.: A study of the shallow water waves with some Boussinesq-type equations. Waves Random Complex Media 1–18 (2021)

  27. Zhong, L.Y., Tang, S.Q., et al.: Compacton, peakon, cuspons, loop solutions and smooth solitons for the generalized KP-MEW equation. Comput. Math. Appl. 68, 1775–1786 (2014)

    Article  MathSciNet  Google Scholar 

  28. Kai, Y., Chen, S., Zheng, B., et al.: Qualitative and quantitative analysis of nonlinear dynamics by the complete discrimination system for polynomial method. Chaos Solitons Fractals 141, 110314 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant Nos. 62072296 and 11901381.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixiang Yin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kai, Y., Ji, J. & Yin, Z. Study of the generalization of regularized long-wave equation. Nonlinear Dyn 107, 2745–2752 (2022). https://doi.org/10.1007/s11071-021-07115-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07115-6

Keywords

Navigation