Skip to main content

Advertisement

Log in

Hierarchical motion planning at the acceleration level based on task priority matrix for space robot

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper addresses the motion planning problem for a free-floating redundant space robotic system at the acceleration level considering the strict task priority. The robot is primarily expected to track the prescribed trajectory together with various other tasks, e.g., regulating the base attitude, avoiding collision with obstacles and respecting the joint constraints. Then, the planning problem is reformulated as strictly hierarchical quadratic least-square problems containing both equality and inequality and solved with the proposed task-priority algorithm based on the combination of the task priority matrix method and the active-set method. Besides, a novel velocity-related dynamic potential function is also designed to obtain a smoother motion when approaching obstacles, and further relaxed to the one-dimensional inequality to take full advantage of the robot capacity and dexterity. Simulation results have validated the proposed motion planning strategy imposed on the dual-arm space robot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article since no datasets were generated or analyzed during the current study.

Abbreviations

\(J^j_i\) :

Joint i of manipulator j

\(C_0, C^j_i\) :

Center of mass (CM) of base and body i of manipulator j

\({\varvec{b}}^j_0\) :

Position vector from \(C_0\) to \(J^j_1\)

\({\varvec{a}}^j_i, {\varvec{b}}^j_i\) :

Position vectors from \(J^j_i\) to \(C^j_i\) and from \(C^j_i\) to \(J^j_{i+1}\)

\({\varvec{r}}_b, {\varvec{r}}^j_{C_i}\) :

Position vectors of \(C_0\) and \(C^j_i\) in the inertia frame

\({\varvec{r}}^j_e\) :

Position vector of end-effector j in the inertia frame

\({\varvec{r}}_s\) :

Position vector of the whole space robotic system CM in the inertia frame

\({\varvec{r}}_{ci}\) :

Position vector of the critical point of link i

\({\varvec{r}}_{bs}\) :

Position vector from \(C_0\) to the system CM

\({\varPsi }_b, {\varPsi }^j_e\) :

Attitude angles of base and end-effector j

\({{\varvec{x}}}_b, {{\varvec{x}}}^j_e\) :

Pose vectors of base and end-effector j

\({\theta }^j\) :

Joint-position vector of manipulator j

\({{\varvec{\omega }}}_b, {{\varvec{\omega }}}^j_e\) :

Angular velocities of base and end-effector j

\({\mathbf{J}}_b, {\mathbf{J}}^j_e\) :

Jacobian matrices corresponding to the motion of base and end-effector j

\({\mathbf{H}}_b\) :

Base inertia matrix

\({\mathbf{H}}^j_m\) :

Inertia matrix of manipulator j

\({\mathbf{H}}^j_{bm}\) :

Coupled inertia matrix between base and manipulator j

\({{\varvec{c}}}_b, {{\varvec{c}}}^j_m\) :

Generalized Coriolis and centrifugal force terms corresponding to base and manipulator j

\({{\varvec{f}}}_b, {{\varvec{f}}}^j_m\) :

Generalized forces and torques exerted to base and end-effector j

\({{\varvec{\tau }}}^j_m\) :

Generalized joint torque of manipulator j

\({{\varvec{v}}}_{ci}\) :

Linear velocity of the critical point \({\varvec{r}}_{ci}\)

\({{\varvec{n}}}_{ci,k}\) :

Unit direction vector pointing from the critical point \({\varvec{r}}_{ci}\) to k-th obstacle

\(\phi _i\) :

Angle between vectors \({{\varvec{v}}}_{ci}\) and \({{\varvec{n}}}_{ci,k}\)

\(d_s\) :

Influence range of artificial potential force

\({\mathbf{F}}_{T}\) :

Task priority matrix (TPM)

References

  1. Li, W., Cheng, D., Liu, X., Wang, Y., Shi, W., Tang, Z., Gao, F., Zeng, F., Chai, H., Luo, W., Cong, Q., Gao, Z.: On-orbit service (OOS) of spacecraft: a review of engineering developments. Progress Aerosp. Sci. 108, 32–120 (2019)

    Article  Google Scholar 

  2. Xu, W., Liang, B., Xu, Y.: Survey of modeling, planning, and ground verification of space robotic systems. Acta Astronaut. 68(11–12), 1629–1649 (2011)

    Article  Google Scholar 

  3. Zhang, X., Liu, J., Gao, Q., Ju, Z.: Adaptive robust decoupling control of multi-arm space robots using time-delay estimation technique. Nonlinear Dyn. 100(3), 2449–2467 (2020)

    Article  Google Scholar 

  4. Hu, J., Wang, T.: Minimum base attitude disturbance planning for a space robot during target capture. J. Mech. Robot. 10(5), 051002 (2018)

    Article  Google Scholar 

  5. Giordano, A.M., Dietrich, A., Ott, C., Albu-Schäffer, A.: Coordination of thrusters, reaction wheels, and arm in orbital robots. Robot. Auton. Syst. 131, 103564 (2020)

    Article  Google Scholar 

  6. Zong, L., Emami, M.R., Luo, J.: Reactionless control of free-floating space manipulators. IEEE Trans. Aerosp. Electron. Syst. 56(2), 1490–1503 (2019)

    Article  Google Scholar 

  7. Vafa, Z., Dubowsky, S.: On the dynamics of manipulators in space using the virtual manipulator approach. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 579–585 (1987)

  8. Torres, M.A., Dubowsky, S.: Minimizing spacecraft attitude disturbances in space manipulator systems. J. Guid. Control Dyn. 15(4), 1010–1017 (1992)

    Article  Google Scholar 

  9. Nenchev, D., Yoshida, K., Uchiyama, M.: Reaction null-space based control of flexible structure mounted manipulator systems. In: Proceedings of IEEE Conference on Decision and Control, pp. 4118–4123 (1996)

  10. Zhou, C., Jin, M., Liu, Y., Zhang, Z., Liu, Y., Liu, H.: Singularity robust path planning for real time base attitude adjustment of free-floating space robot. Int. J. Autom. Comput. 14(2), 169–178 (2017)

    Article  Google Scholar 

  11. Chu, Z., Ma, Y., Cui, J.: Adaptive reactionless control strategy via the pso-elm algorithm for free-floating space robots during manipulation of unknown objects. Nonlinear Dyn. 91(2), 1321–1335 (2018)

    Article  Google Scholar 

  12. Yoshida, K., Kurazume, R., Umetani, Y.: Dual arm coordination in space free-flying robot. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 2516–2521 (1991)

  13. Chen, X., Qin, S.: Motion planning for dual-arm space robot towards capturing target satellite and keeping the base inertially fixed. IEEE Access 6, 26292–26306 (2018)

    Article  Google Scholar 

  14. Xie, K., Lan, W.: Acceleration-level trajectory planning for a dual-arm space robot. IFAC-PapersOnLine 52(24), 243–248 (2019)

    Article  Google Scholar 

  15. Qian, Y., Yuan, J., Wan, W.: Improved trajectory planning method for space robot-system with collision prediction. J. Intell. Robot. Syst. 99(2), 289–302 (2020)

    Article  Google Scholar 

  16. Xie, Y., Zhang, Z., Wu, X., Shi, Z., Chen, Y., Wu, B., Mantey, K.A.: Obstacle avoidance and path planning for multi-joint manipulator in a space robot. IEEE Access 8, 3511–3526 (2019)

    Article  Google Scholar 

  17. Xidias, E.K.: Time-optimal trajectory planning for hyper-redundant manipulators in 3d workspaces. Robot. Comput. Integr. Manuf. 50, 286–298 (2018)

    Article  Google Scholar 

  18. Zhang, H., Jin, H., Liu, Z., Liu, Y., Zhu, Y., Zhao, J.: Real-time kinematic control for redundant manipulators in a time-varying environment: multiple-dynamic obstacle avoidance and fast tracking of a moving object. IEEE Trans. Ind. Inf. 16(1), 28–41 (2019)

    Article  Google Scholar 

  19. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 500–505 (1985)

  20. Zhang, N., Zhang, Y., Ma, C., Wang, B.: Path planning of six-dof serial robots based on improved artificial potential field method. In: Proceedings of IEEE International Conference on Robotics and Biomimetics, pp. 617–621 (2017)

  21. Park, D., Hoffmann, H., Pastor, P., Schaal, S.: Movement reproduction and obstacle avoidance with dynamic movement primitives and potential fields. In: Proceedings of IEEE-RAS International Conference on Humanoid Robots, pp. 91–98 (2008)

  22. Ginesi, M., Meli, D., Roberti, A., Sansonetto, N., Fiorini, P.: Dynamic movement primitives: volumetric obstacle avoidance using dynamic potential functions. J. Intell. Robot. Syst. 101(79), 1–20 (2021)

    Google Scholar 

  23. Misra, G., Bai, X.: Task-constrained trajectory planning of free-floating space-robotic systems using convex optimization. J. Guid. Control Dyn. 40(11), 2857–2870 (2017)

    Article  Google Scholar 

  24. Luo, J., Yu, M., Wang, M., Yuan, J.: A fast trajectory planning framework with task-priority for space robot. Acta Astronaut. 152, 823–835 (2018)

    Article  Google Scholar 

  25. Zhang, Y., Wang, J.: Obstacle avoidance for kinematically redundant manipulators using a dual neural network. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 34(1), 752–759 (2004)

    Article  Google Scholar 

  26. Guo, D., Zhang, Y.: Acceleration-level inequality-based man scheme for obstacle avoidance of redundant robot manipulators. IEEE Trans. Ind. Electron. 61(12), 6903–6914 (2014)

    Article  Google Scholar 

  27. Chen, D., Zhang, Y.: Minimum jerk norm scheme applied to obstacle avoidance of redundant robot arm with jerk bounded and feedback control. IET Control Theory Appl. 10(15), 1896–1903 (2016)

    Article  MathSciNet  Google Scholar 

  28. Siciliano, B., Slotine, J.J.E.: A general framework for managing multiple tasks in highly redundant robotic systems. In: Proceedings of International Conference on Advanced Robotics, pp. 1211–1216 (1991)

  29. Zong, L., Luo, J., Wang, M., Yuan, J.: Parameters concurrent learning and reactionless control in post-capture of unknown targets by space manipulators. Nonlinear Dyn. 96(1), 443–457 (2019)

  30. Flacco, F., De Luca, A., Khatib, O.: Control of redundant robots under hard joint constraints: saturation in the null space. IEEE Trans. Robot. 31(3), 637–654 (2015)

    Article  Google Scholar 

  31. Del Prete, A.: Joint position and velocity bounds in discrete-time acceleration/torque control of robot manipulators. IEEE Robot. Autom. Lett. 3(1), 281–288 (2017)

    Article  Google Scholar 

  32. Kanoun, O., Lamiraux, F., Wieber, P.B.: Kinematic control of redundant manipulators: generalizing the task-priority framework to inequality task. IEEE Trans. Robot. 27(4), 785–792 (2011)

    Article  Google Scholar 

  33. Escande, A., Mansard, N., Wieber, P.B.: Hierarchical quadratic programming: fast online humanoid-robot motion generation. Int. J. Robot. Res. 33(7), 1006–1028 (2014)

    Article  Google Scholar 

  34. Flacco, F.: The tasks priority matrix: a new tool for hierarchical redundancy resolution. In: Proceedings of IEEE-RAS International Conference on Humanoid Robots, pp. 1–7 (2016)

  35. Khatib, M., Al Khudir, K., De Luca, A.: Task priority matrix at the acceleration level: collision avoidance under relaxed constraints. IEEE Robot. Autom. Lett. 5(3), 4970–4977 (2020)

    Article  Google Scholar 

  36. Nocedal, J., Wright, S.: Numerical Optimization. Springer (2006)

  37. Gilbert, E.G., Johnson, D.W., Keerthi, S.S.: A fast procedure for computing the distance between complex objects in three-dimensional space. IEEE J. Robot. Autom. 4(2), 193–203 (1988)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (No. U2013206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Cai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, P., Yue, X., Wang, M. et al. Hierarchical motion planning at the acceleration level based on task priority matrix for space robot. Nonlinear Dyn 107, 2309–2326 (2022). https://doi.org/10.1007/s11071-021-07038-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07038-2

Keywords

Navigation