Skip to main content
Log in

Controller design for switched systems with nonlinear sub-systems using common Lyapunov functions

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Hybrid systems are common in real life and have been studied in many different fields. However, due to the interaction of different sub-systems, a hybrid system is much more complex than a mono-dynamic one, and great challenges are confronted when seeking stable controllers either for linear or nonlinear hybrid systems. The traditional design scheme for such a system, namely, to design a controller for each sub-system separately, cannot yield satisfactory performance, since the switches between sub-systems are not specifically considered. In fact, the controllers constructed in this way are usually of poor performance, or even unstable, as a disastrous effect caused by the alternation of sub-systems. In this paper, considering the aforementioned problem, a control scheme is proposed to design suitable controllers for hybrid systems to achieve overall stability by taking account of the switching behaviors of the system, as well as its sub-systems carefully. The design scheme consists of two steps, wherein the first step aims to design sub-controllers for different sub-systems, usually with different sub-Lyapunov functions, while a common Lyapunov function candidate is composed in the second step to modify the previously designed sub-controllers correspondingly. Following this design scheme, not only the stability, but also the closed-loop performance is successfully guaranteed. Some simulation results are provided to show the satisfactory performance of the proposed design scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lunze, J., Lamnabhi-Lagarrigue, F.: Handbook of Hybrid Systems Control: Theory, Tools. Applications. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  2. Guan, Y., Peng, C.: A hybrid transmission scheme for networked control systems. ISA Trans. 96, 155–162 (2020). Available: https://www.sciencedirect.com/science/article/pii/S0019057819302757

  3. Zhang, J., Hasandka, A., Alam, S.S., Elgindy, T., Florita, A.R., Hodge, B.M.: Analysis of hybrid smart grid communication network designs for distributed energy resources coordination. In: Proceedings of 2019 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), pp. 1–5 . IEEE, Washington D.C, USA (2019)

  4. Chen, H., Xu, D., Deng, X.: Control for power converter of small-scale switched reluctance wind power generator. IEEE Trans. Industr. Electron. 68(4), 3148–3158 (2021)

    Article  Google Scholar 

  5. Wu, C., Wang, J., Chen, X., Du, P., Yang, W.: A novel hybrid system based on multi-objective optimization for wind speed forecasting. Renew. Energy. 146, 149–165 (2020). Available: https://www.sciencedirect.com/science/article/pii/S096014811930641X

  6. Zhou, Z., Zhao, Y.: Accelerated ADMM based trajectory optimization for legged locomotion with coupled rigid body dynamics. In: American Control Conference (ACC). Denver, Colorado, USA , pp. 5082–5089 (2020)

  7. Vinay, R.K., Jonathan, H., Robert, G., Kaveh, A.H.: Distributed controllers for human-robot locomotion: a scalable approach based on decomposition and hybrid zero dynamics. IEEE Control Syst. Lett. 5(6), 1976–1981 (2021)

    Article  Google Scholar 

  8. Kolathaya, S.: Local stability of PD controlled bipedal walking robots. Automatica 114, 108841 (2020)

    Article  MathSciNet  Google Scholar 

  9. Peng, Z., Wang, J., Liu, Z., Li, Z., Wang, D., Dai, Y., Zeng, G., Shen, Z.J.: Adaptive gate delay-time control of Si/SiC hybrid switch for efficiency improvement in inverters. IEEE Trans. Power Electron. 36(3), 3437–3449 (2021)

    Article  Google Scholar 

  10. Guo, P., Xu, Q., Yue, Y., He, Z., Xiao, M., Ouyang, H., Guerrero, J.G.M.: Hybrid model predictive control for modified modular multilevel switch-mode power amplifier. IEEE Trans. Power Electron. 36(5), 5302–5322 (2021)

    Article  Google Scholar 

  11. Tazay, A.F., Ibrahim, A.M.A., Noureldeen, O., Hamdan, I.: Modeling, control, and performance evaluation of grid-tied hybrid PV/wind power generation system: case study of Gabel El-Zeit region Egypt. IEEE Access 8, 96528–96542 (2020)

    Article  Google Scholar 

  12. Yan, J., Lu, L., Ma, T., Zhou, Y., Zhao, C.Y.: Thermal management of the waste energy of a stand-alone hybrid PV-wind-battery power system in Hong Kong. Energy Convers. Manag. 203, 1122611–11226110 (2020)

    Article  Google Scholar 

  13. Cai, L.M.: Dynamics of wild and sterile mosquito population models with delayed releasing. Int. J. Bifurc. Chaos 30(11): 2050218 (2020). Available: https://doi.org/10.1142/S0218127420502181

  14. Mohamed, A., Zmuda, H.M., Ha, P.T., Coats, E.R., Beyenal, H.: Large-scale switchable potentiostatically controlled/microbial fuel cell bioelectrochemical wastewater treatment system. Bioelectrochemistry 138, 107724 (2021). Available: https://www.sciencedirect.com/science/article/pii/S1567539420306472

  15. Du, Z., Kao, Y., Karimi, H.R., Zhao, X.: Interval type-2 fuzzy sampled-data \({H}_{\infty }\) control for nonlinear unreliable networked control systems. IEEE Trans. Fuzzy Syst. 28(7), 1434–1448 (2020)

    Article  Google Scholar 

  16. Liang, X., Xia, J., Chen, G., Zhang, H., Wang, Z.: Dissipativity-based non-fragile sampled-data control for fuzzy Markovian jump systems. Int. J. Fuzzy Syst. 21(12), 1325–1339 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Shi, K., Wang, J., Zhong, S., Tang, Y., Cheng, J.: Non-fragile memory filtering of T-S fuzzy delayed neural networks based on switched fuzzy sampled-data control. Fuzzy Sets Syst. 394, 40–64 (2020). Neurofuzzy Systems and Learning. Available: https://www.sciencedirect.com/science/article/pii/S0165011419300715

  18. Neunert, M., Abdolmaleki, A., Wulfmeier, M., Lampe, T., Springenberg, T., Hafner, R., Romano, F., Buchli, J., Heess, N., Riedmiller, M.: Continuous-discrete reinforcement learning for hybrid control in robotics. In: Kaelbling L.P., Kragic, D., Sugiura, K. (eds.) Proceedings of the Conference on Robot Learning, Proceedings of Machine Learning Research, vol. 100. PMLR, 30 Oct–01 Nov, pp. 735–751 (2020). Available: http://proceedings.mlr.press/v100/neunert20a.html

  19. Chen, W., Zhao, L., Tan, D., Wei, Z., Xu, K., Jiang, Y.: Human-machine shared control for lane departure assistance based on hybrid system theory. Control. Eng. Pract. 84, 399–407 (2019)

    Article  Google Scholar 

  20. Nagatsu, Y., Hashimoto, H.: Multilateral haptic feedback control by transmission of force information. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 1718–1723 (2020)

  21. Tang, W., Li, K., Wu, J., Xie, Y.: Consensus of nonlinear multi-agent systems with distributed event-triggered impulsive control. J. Vib. Control 1, 1077546320985978 . https://doi.org/10.1177/1077546320985978

  22. Hu, B., Guan, Z.H., Lewis, F.L., Chen, C.L.P.: Adaptive tracking control of cooperative robot manipulators with Markovian switched couplings. IEEE Trans. Industr. Electron. 68(3), 2427–2436 (2021)

    Article  Google Scholar 

  23. Ma, L., Xu, N., Huo, X., Zhao, X.: Adaptive finite-time output-feedback control design for switched pure-feedback nonlinear systems with average dwell time. Nonlinear Anal. Hybrid Syste. 37, 100908 (2020). Available: https://www.sciencedirect.com/science/article/pii/S1751570X20300558

  24. Wu, F., Lian, J.: Stabilization of constrained switched systems via multiple Lyapunov R-functions. Syst. Control Lett. 139, 104686 (2020)

    Article  MathSciNet  Google Scholar 

  25. Zhao, X., Shi, P., Zhang, L.: Asynchronously switched control of a class of slowly switched linear systems. Syst. Control Lett. 61(12), 1151–1156 (2012)

    Article  MathSciNet  Google Scholar 

  26. Forni, F., Nešić, D., Zaccarian, L.: Reset passivation of nonlinear controllers via a suitable time-regular reset map. Automatica 47(9), 2099–2106 (2011). Available: https://www.sciencedirect.com/science/article/pii/S0005109811003220

  27. Zhu, Y., Zheng, W.X.: Multiple Lyapunov functions analysis approach for discrete-time switched piecewise-affine systems under dwell-time constraints. IEEE Trans. Autom. Control 65(5), 2177–2184 (2019)

    Article  MathSciNet  Google Scholar 

  28. Vu, L., Chatterjee, D., Liberzon, D.: Input-to-state stability of switched systems and switching adaptive control. Automatica 43(4), 639–646 (2007). Available: https://www.sciencedirect.com/science/article/pii/S0005109806004420

  29. Decarlo, R., Branicky, M., Pettersson, S., Lennartson, B.: Perspectives and results on the stability and stabilizability of hybrid systems. Proc. IEEE 88(7), 1069–1082 (2000)

    Article  Google Scholar 

  30. Li, X., Li, P.: Stability of time-delay systems with impulsive control involving stabilizing delays. Automatica 124, 109336 (2021). Available: https://www.sciencedirect.com/science/article/pii/S0005109820305367

  31. Xiao, Y., Cheng, D., Qin, H.: Optimal impulsive control in periodic ecosystem. Syst. Control Lett. 55(7), 558–565, (2006). Available: https://www.sciencedirect.com/science/article/pii/S0167691106000181

  32. Wang, J., Liu, X., Xia, J., Shen, H., Park, J.H.: Quantized interval type-2 fuzzy control for persistent dwell-time switched nonlinear systems with singular perturbations. IEEE Trans. Cybern. (2021). Available: https://doi.org/10.1109/TCYB.2021.3049459

  33. Shen, H., Xing, M.P., Wu, Z.G., Xu, S.Y., Cao, J.D.: Multiobjective fault-tolerant control for fuzzy switched systems with persistent dwell time and its application in electric circuits. IEEE Trans. Fuzzy Syst. 28(10), 2335–2347 (2020)

    Article  Google Scholar 

  34. Li, S., Xiang, Z., Zhang, J.: Dwell-time conditions for exponential stability and standard \({L}_1\)-gain performance of discrete-time singular switched positive systems with time-varying delays. Nonlinear Anal. Hybrid Syst. 38, 100939 (2020). Available: https://www.sciencedirect.com/science/article/pii/S1751570X20300868

  35. Branicky, M.S.: Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Trans. Autom. Control 43(4), 475–482 (1998)

    Article  MathSciNet  Google Scholar 

  36. Ye, H., Michel, A.N., Hau, L.: “Stability analysis of discontinuous dynamical systems with applications. In: IFAC Proceedings Volumes, vol. 29, pp. 2335–2340, 1996, 13th World Congress of IFAC. San Francisco USA, 30 June - 5 July ((1996). Available: https://www.sciencedirect.com/science/article/pii/S1474667017580222

  37. Briat, C.: Convex lifted conditions for robust \(\ell _2\)-stability analysis and \(\ell _2\)-stabilization of linear discrete-time switched systems with minimum dwell-time constraint. Automatica 50(3), 976–983 (2014). Available: https://www.sciencedirect.com/science/article/pii/S0005109814000363

  38. Liberzon, D., Morse, A.: Basic problems in stability and design of switched systems. IEEE Control Syst. Mag. 19(5), 59–70 (1999)

    Article  Google Scholar 

  39. Briat, C.: Convex conditions for robust stabilization of uncertain switched systems with guaranteed minimum and mode-dependent dwell-time. Syst. Control Lett. 78, 63–72 (2015). Available: https://www.sciencedirect.com/science/article/pii/S0167691115000249

  40. Li, Z., Wen, Y., Soh, Y.: Stability of perturbed switched nonlinear systems. In: Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251)

  41. Liu, J., Liu, X., Xie, W.C.: Input-to-state stability of impulsive and switching hybrid systems with time-delay. Automatica 47(5), 899–908 (2011)

    Article  MathSciNet  Google Scholar 

  42. Zhang, M., Gao, L.: Input-to-state stability for impulsive switched nonlinear systems with unstable subsystems. Trans. Inst. Meas. Control 40(7), 2167–2177 (2018). https://doi.org/10.1177/0142331217699057

    Article  Google Scholar 

  43. Gao, L., Cao, Z., Zhang, M., Zhu, Q.: Input-to-state stability for hybrid delayed systems with admissible edge-dependent switching signals. J. Frankl. Inst. 357(13), 8823–8850 (2020). Available: https://www.sciencedirect.com/science/article/pii/S0016003220304312

  44. Wang, Z., Sun, J., Chen, J.: Input-to-state stability of impulsive switched nonlinear time-delay systems with two asynchronous switching phenomena. Int. J. Robust Nonlinear Control 30(12), 4463–4484 (2020). Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/rnc.4995

  45. Zhang, L., Zhuang, S., Shi, P., Zhu, Y.: Uniform tube based stabilization of switched linear systems with mode-dependent persistent dwell-time. IEEE Trans. Autom. Control 60(11), 2994–2999 (2015)

    Article  MathSciNet  Google Scholar 

  46. Xiong, X., Ames, A.: 3D underactuated bipedal walking via H-LIP based gait synthesis and stepping stabilization. arXiv preprint arXiv:2101.09588, (2021)

  47. Naghshtabrizi, P., Hespanha, J.P., Teel, A.R.: Exponential stability of impulsive systems with application to uncertain sampled-data systems. Syst. Control Lett. 57(5), 378–385 (2008). Available: https://www.sciencedirect.com/science/article/pii/S0167691107001387

  48. Zhang, L., Xiang, W.: Mode-identifying time estimation and switching-delay tolerant control for switched systems: an elementary time unit approach. Automatica 64, 174–181 (2016)

    Article  MathSciNet  Google Scholar 

  49. Zhai, D., Lu, A.Y., Li, J.H., Zhang, Q.L.: Simultaneous fault detection and control for switched linear systems with mode-dependent average dwell-time. Appl. Math. Comput. 273, 767–792 (2016). Available: https://www.sciencedirect.com/science/article/pii/S0096300315014137

  50. Wang, R., Hou, L., Zong, G., Fei, S., Yang, D.: Stability and stabilization of continuous-time switched systems: a multiple discontinuous convex Lyapunov function approach. Int. J. Robust Nonlinear Control 29(5), 1499–1514 (2019). Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/rnc.4449

  51. Chen, W., Zhao, L., Tan, D., Wei, Z., Xu, K., Jiang, Y.: Human-machine shared control for lane departure assistance based on hybrid system theory. Control Eng. Pract. 84, 399–407 (2019). Available: https://www.sciencedirect.com/science/article/pii/S0967066118307160

  52. He, S., Ai, Q., Ren, C., Dong, J., Liu, F.: Finite-time resilient controller design of a class of uncertain nonlinear systems with time-delays under asynchronous switching. IEEE Trans. Syst. Man Cybern. Syst. 49(2), 281–286 (2019)

    Article  Google Scholar 

  53. Xia, J., Chen, G., Park, J.H., Shen, H., Zhuang, G.: Dissipativity-based sampled-data control for fuzzy switched Markovian jump systems. IEEE Trans. Fuzzy Syst. 1, 1325–1339 (2020)

    Google Scholar 

  54. Morris, B., Grizzle, J.W.: Hybrid invariant manifolds in systems with impulse effects with application to periodic locomotion in bipedal robots. IEEE Trans. Autom. Control 54(8), 1751–1764 (2009)

    Article  MathSciNet  Google Scholar 

  55. Ames, A.D., Galloway, K., Sreenath, K., Grizzle, J.W.: Rapidly exponentially stabilizing control Lyapunov functions and hybrid zero dynamics. IEEE Trans. Autom. Control 59(4), 876–891 (2014)

    Article  MathSciNet  Google Scholar 

  56. Hamed, K.A., Buss, B.G., Grizzle, J.W.: Continuous-time controllers for stabilizing periodic orbits of hybrid systems: application to an underactuated 3D bipedal robot. In: Proceedings of 53rd IEEE Conference on Decision and Control. Los Angeles, California, USA: IEEE, pp. 1507–1513 (2014)

  57. Westervelt, E., Grizzle, J., Koditschek, D.: Hybrid zero dynamics of planar biped walkers. IEEE Trans. Autom. Control 48(1), 42–56 (2003)

    Article  MathSciNet  Google Scholar 

  58. Sreenath, K., Park, H.W., Poulakakis, I., Grizzle, J.W.: A compliant hybrid zero dynamics controller for stable, efficient and fast bipedal walking on MABEL. Int. J. Robot. Res. 30(9), 1170–1193 (2011). Available: https://doi.org/10.1177/0278364910379882

  59. Niu, B., Zhao, P., Liu, J.D., Ma, H.J., Liu, Y.J.: Global adaptive control of switched uncertain nonlinear systems: an improved MDADT method. Automatica 115: 108872 (2020). Available: https://www.sciencedirect.com/science/article/pii/S0005109820300704

  60. Liu, J., Liu, X., Xie, W.C.: Invariance principles for impulsive switched systems. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 16, 631–654 (2009)

  61. Krstic, M., Kokotovic, P.V., Kanellakopoulos, I.: Nonlinear and Adaptive Control Design. Wiley, New Jersey (1995)

    MATH  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China under Grant 61633012 and 62003172.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongchun Fang.

Ethics declarations

Conflict of interest

This paper declares no conflicts of interest/competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Z., Fang, Y., Wu, Y. et al. Controller design for switched systems with nonlinear sub-systems using common Lyapunov functions. Nonlinear Dyn 107, 2275–2289 (2022). https://doi.org/10.1007/s11071-021-07012-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07012-y

Keywords

Navigation