Skip to main content
Log in

General regression neural network-based data-driven model-free predictive functional control for a class of discrete-time nonlinear systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a novel general regression neural network-based data-driven model-free nonlinear predictive functional control approach is proposed for a class of unknown single-input/single-output discrete-time nonlinear systems. The historical measurable data are used to construct an explicit model for control design and estimate system time-varying parameters online, making the approach model free. By using basis functions to structuralize system input, online computational load (OCL) of the controller can be reduced dramatically compared with existing model-free predictive control approaches. Moreover, the prediction function is realized by a general regression neural network-based system parameter predictive algorithm, bringing the controller good robustness and strong capability against sudden changes from prescribed references and external circumstances simultaneously. Simulation results show that, by using much less OCL, the proposed approach-based closed-loop systems can achieve even smaller overshoot and shorter response time than the existing model-free predictive control approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Hou, Z.S., Jin, S.T.: Model Free Adaptive Control: Theory and Applications. Tylor Francis Group, Boca Raton (2013)

    Book  Google Scholar 

  2. Hanul, H., Kiho, J., Jae-Gu, K., Sehoon, O.: Iterative feedback tuning of cascade control of two inertia system. IEEE Control Syst. Lett. 5(3), 785–790 (2021)

    Article  MathSciNet  Google Scholar 

  3. Chrystian, L.R., Rodrigo, B.G., Jeferson, V.F., Fausto, B.L., Luciola, C.: Virtual reference feedback tuning applied to DC–DC converters. IEEE Trans. Ind. Electron. 68(1), 544–552 (2021)

    Article  Google Scholar 

  4. Wu, X.Z., Wang, X.M., Qin, W., Li, L.W., Sun, Z.X., Shen, M.Q.: Iterative learning control for nonlinear systems with iteration-varying trial lengths using modified reference trajectories. In: Proceedings of 2021 IEEE 10th Data Driven Control and Learning Systems Conference, 2021 (DDCLS 2021). IEEE, pp. 1161–1165 (2021)

  5. Liu, D.R., Xue, S., Zhao, B., Luo, B., Wei, Q.L.: Adaptive dynamic programming for control: a survey and recent advances. IEEE Trans. Syst. Man Cybern. Syst. 51(1), 142–160 (2021)

    Article  Google Scholar 

  6. Chen, J.: Flexible joint manipulator controlling algorithm based on neural network improved PID. In: Proceedings of 2021 13th International Conference on Measuring Technology and Mechatronics Automation, 2021 (ICMTMA 2021). IEEE, pp. 419–422 (2021)

  7. Marc, F.Q.S., Edwin, S., Argel, A.B., Ryan, R.P.V., Alvin, L.C.: A genetic algorithm approach to PID tuning of a quadcopter UAV. In: Proceedings of 2021 IEEE/SICE International Symposium on System Integration, 2021 (SII 2021). IEEE, pp. 675–678 (2021)

  8. Mokhtar, S., Monier, H.: Tuning of PID controller using different optimization algorithms for industrial DC motor. In: Proceedings of 2021 International Conference on Advance Computing and Innovative Technologies in Engineering, 2021. (ICACITE 2021). IEEE, pp. 756–759 (2021)

  9. Abdullah, M., Takeshi, M,: Extremum seeking control of preload-controllable ultrasonic motor. In: Proceedings of 2021 IEEE International Conference and Exhibition on New Actuator Systems and Applications, 2021. IEEE, pp. 42–45 (2021)

  10. Oleg, G., Victoria, E., Yury, I., Jiang, Y.M.: Simultaneous perturbation stochastic approximation-based consensus for tracking under unknown-but-bounded disturbances. IEEE Trans. Autom. Control 66(8), 3710–3717 (2021)

    Article  MathSciNet  Google Scholar 

  11. Yavuz, B.K., Yilmaz, A., Baris, G.: Speed control based PID configuration of a DC motor for an unmanned agricultural vehicle. In: Proceedings of 2021 8th International Conference on Electrical and Electronics Engineering, 2021. IEEE, pp. 117–120 (2021)

  12. Hou, Z.S., Liu, S.D., Tian, T.T.: Lazy-learning-based data-driven model-free adaptive predictive control for a class of discrete-time nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst. 28(8), 1–15 (2017)

    Article  MathSciNet  Google Scholar 

  13. Zhao, L.G., He, W.L., Lv, F.K.: Model-free adaptive control for parafoil systems based on the iterative feedback tuning method. IEEE Access 9, 35900–35914 (2021)

    Article  Google Scholar 

  14. Xu, J., Lin, N., Chi, R.H.: Improved high-order model free adaptive control. In: Proceedings of 2021 IEEE 10th Data Driven Control and Learning Systems Conference, 2021. (DDCLS 2021), pp. 704–708

  15. Liu, S.D., Hou, Z.S., Zhang, X., Ji, H.H.: Model-free adaptive control method for a class of unknown MIMO systems with measurement noise and application to quadrotor aircraft. IET Control Theory Appl. 14(15), 2084–2096 (2020)

    Article  Google Scholar 

  16. Hou, Z.S., Jin, S.T.: A novel data-driven control approach for a class of discrete-time nonlinear systems. IEEE Trans. Control Syst. Technol. 19(6), 1549–1558 (2011)

    Article  MathSciNet  Google Scholar 

  17. Wu. H.Y., Jin, S.T., Yin, C.K., Zheng, J.M., Hou, Z.S.: Model free adaptive predictive tracking control for robot manipulators with uncertain parameters. In: Proceedings of 2021 IEEE 10th Data Driven Control and Learning Systems Conference, 2021 (DDCLS 2021), pp. 1571–1576. IEEE (2021)

  18. Wang, Y.S., Hou, M.D.: Model-free adaptive integral terminal sliding mode predictive control for a class of discrete-time nonlinear systems. ISA Trans. 93(2019), 209–217 (2019)

    Article  Google Scholar 

  19. Hou, Z.S., Lei, T.: Constrained model free adaptive predictive perimeter control and route guidance for multi-region urban traffic systems. IEEE Trans. Intell. Transp. Syst., 1-13 (2021)

  20. Li, Z.X., Jin, S.T., Xu, C.Y., Li, J.: Model-free adaptive predictive control for an urban road traffic network via perimeter control. IEEE Access 7, 172489–172495 (2019)

    Article  Google Scholar 

  21. Lei, T., Hou, Z.S.: Perimeter control for two-region urban traffic system based on model free adaptive predictive control with constraints. IFAC PapersOnLine 52(6), 25–30 (2019)

    Article  MathSciNet  Google Scholar 

  22. Li, D., De Schutter, B.: Distributed model-free adaptive predictive control for urban traffic networks. IEEE Trans. Control Syst. Technol., 1-13 (2021)

  23. Tan, H.R., Wang, Y.N., Wu, M., Huang, Z.W., Miao, Z.Q.: Distributed group coordination of multiagent systems in cloud computing systems using a model-free adaptive predictive control strategy. IEEE Trans. Neural Netw. Learn. Syst., 1–13 (2021)

  24. Zhou, P., Zhang, S., Wen, L., Fu, J., Chai, T.Y., Wang, H.: Kalman filter-based data-driven robust model- free adaptive predictive control of a complicated industrial process. IEEE Trans. Autom. Sci. Eng., 1–16 (2021)

  25. Yu, Z., Bai, J.J., Zou, H.B.: Improved disturbed predictive function control with basic function and PID control structure. IEEE Access 8, 18219–18227 (2020)

    Article  Google Scholar 

  26. Xiang, Y., Liu, Z.L., Wang, L.M.: Genetic-algorithm-optimization-based predictive functional control for chemical industry processes against partial actuator faults. IEEE Access 8, 214586–214595 (2020)

    Article  Google Scholar 

  27. Juliani, V., Adytia, D., Adiwijaya: wave height prediction based on wind information by using general regression neural network, study case in Jakarta Bay. In: Proceedings of 2020 8th International Conference on Information and Communication Technology (ICoICT 2020). IEEE, pp. 1–5 (2020)

  28. Mian, H.R., Hu, G.J., Hewage, K., Rodriguez, M.J., Sadiq, R.: Predicting unregulated disinfection by-products in water distribution networks using generalized regression neural networks. Urb. Water J. 15(7), 1–14 (2021)

    Google Scholar 

  29. Alzo’Ubi, A.K., Ibrahim, F.: Predicting the pile static load test using backpropagation neural network and generalized regression neural network—a comparative study. Int. J. Geotech. Eng. 15(7), 810–821 (2021)

  30. Salehi, M., Farhadi, S., Moieni, A., Safaie, N., Hesami, M.: A hybrid model based on general regression neural network and fruit fly optimization algorithm for forecasting and optimizing paclitaxel biosynthesis in Corylus avellana cell culture. Plant Methods 17, 1–13 (2021)

    Article  Google Scholar 

  31. Niu, D.X., Wang, K.K., Wu, J., Sun, L.J., Liang, Y., Xu, X.M., Yang, X.L.: Can china achieve its 2030 carbon emissions commitment? scenario analysis based on an improved general regression neural network. J. Clean. Prod. 243(2020), 1–14 (2020)

    Google Scholar 

  32. Kabir, Md.R., Faysal, T.I., Hossain, Md.S., Shorno, J.N., Siddique, S.: A satellite collision avoidance system based on General Regression Neural Network. In: Proceedings of 2020IEEE/ACM International Conference on Big Data Computing, Applications and Technologies (BDCAT 2020). IEEE, pp. 154–160 (2020)

  33. Bu, X.H., Wang, Q.F., Hou, Z.S., Qian, W.: Data driven control for a class of nonlinear systems with output saturation. ISA Trans. 81(2018), 1–7 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by National Natural Science Foundation of China (Grant Number 52002181).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Theorem 1

From formula (12), it is easy to obtain that:

$$\begin{aligned} \frac{\partial {y_m(k+n_i)}}{\partial {\varDelta u(k+n_i-1)}}={\hat{\phi }}(k+n_i-1) \end{aligned}$$
(26)

where \(i=1,2\). Let’s consider the RHPI (14). Considering the necessary condition \(\frac{\partial {J(k)}}{\partial {\varDelta u(k+n_i-1)}}=0\) and formula (13) yields:

$$\begin{aligned} \begin{aligned} 0&=-{\hat{\phi }}(k+n_i-1)[y_r(k+n_i)-y_p(k+n_i)]\\&\quad +\lambda _i \varDelta u(k+n_i-1) \\&=-{\hat{\phi }}(k+n_i-1)[y_r(k+n_i)-y_m(k+n_i)\\&\quad -e(k+n_i)]+\lambda _i \varDelta u(k+n_i-1) \\&=-{\hat{\phi }}(k+n_i-1)[y_r(k+n_i)\\&\quad -y_m(k+n_i)-y_p(k)+y_m(k)]\\&\quad +\lambda _i \varDelta u(k+n_i-1) \end{aligned} \end{aligned}$$
(27)

Then bringing formula (11) and the internal predictive model (12) into (27) yields:

$$\begin{aligned}&-{\hat{\phi }}(k+n_i-1)[y_r(k+n_i)-{\hat{\phi }}(k) \cdot \varDelta u(k)\nonumber \\&\quad - ({\hat{\phi }}(k+1)+ \cdots +{\hat{\phi }}(k+n_i-1)) \cdot \mu _2-y_p(k)]\nonumber \\&\quad +\lambda _i \mu _2=0 \end{aligned}$$
(28)

Then by considering \(i=1,2\), formula (28) can be written by:

$$\begin{aligned} \left\{ \begin{array}{ll} {\hat{\phi }}(k) {\hat{\phi }}(k+n_1-1) \varDelta u(k)+[{\hat{\phi }}(k+n_1-1)\\ \qquad \times \sum \limits _{i=1}^{n_1-1}{\hat{\phi }}(k+i)+\lambda _1] \mu _2\\ ={\hat{\phi }}(k+n_1-1)[y_r(k+n_1)-y_p(k)]\\ ~\\ {\hat{\phi }}(k) {\hat{\phi }}(k+n_2-1) \varDelta u(k)+[{\hat{\phi }}(k+n_2-1)\\ \qquad \times \sum \limits _{i=1}^{n_2-1}{\hat{\phi }}(k+i)+\lambda _2] \mu _2\\ ={\hat{\phi }}(k+n_2-1)[y_r(k+n_2)-y_p(k)]\\ \end{array} \right. \end{aligned}$$
(29)

Treat \(\varDelta u(k)\) and \(\mu _2\) as variables, then, the incremental control law \(\varDelta u(k)\) can be derived by solving formula (29):

$$\begin{aligned} \left\{ \begin{array}{ll} D={\hat{\phi }}(k+n_1-1) \cdot [y_r(k+n_1)-y_p(k)][{\hat{\phi }}(k+n_2-1) \\ \qquad \times \sum \limits _{i=1}^{n_2-1} {\hat{\phi }}(k+i)+\lambda _2]\\ \qquad -{\hat{\phi }}(k+n_2-1) \cdot [y_r(k+n_2)-y_p(k)][{\hat{\phi }}(k+n_1-1)\\ \qquad \times \sum \limits _{i=1}^{n_1-1}{\hat{\phi }}(k+i)+\lambda _1]\\ D_0={\hat{\phi }}(k) \cdot [\lambda _2 {\hat{\phi }}(k+n_1-1) - \lambda _1 {\hat{\phi }}(k+n_2-1) \\ \qquad -{\hat{\phi }}(k+n_1-1) {\hat{\phi }}(k+n_2-1) \cdot sign(n_2-n_1) \cdot \\ \qquad \times \sum \limits _{i=min \{ n_1,n_2 \}}^{max \{ n_1,n_2 \}-1} {\hat{\phi }}(k+i)]\\ \varDelta u(k)=\frac{D}{D_0}\\ u(k)= \varDelta u(k) + u(k-1)\\ \end{array}\right. \nonumber \\ \end{aligned}$$
(30)

Thus, Theorem 1 is proved.

Appendix B: Proof of Theorem 2

Denote \(\phi _e(k)={\hat{\phi }}(k)-\phi (k)\). Subtracting \(\phi (k)\) from both sides of the first equation of formula (20) yields:

$$\begin{aligned} \begin{aligned} \phi _e(k)&=\phi _e(k-1)-\phi (k)+\phi (k-1)\\&\quad +\frac{\eta \varDelta u(k-1)}{\mu +|\varDelta u(k-1)|^2} \Bigg [\varDelta y_p(k)+ \varDelta w(k) \\&\quad -{\hat{\phi }}(k-1) \varDelta u(k-1\Bigg ] \\&=[1-\frac{\eta |\varDelta u(k-1)|^2}{\mu +|\varDelta u(k-1)|^2}]\phi _e(k-1)\\&\quad +\frac{\eta \varDelta u(k-1)}{\mu +|\varDelta u(k-1)|^2} \varDelta w(k)-\phi (k)\\&\quad +\phi (k-1) \end{aligned} \end{aligned}$$
(31)

Considering that function \(f(x)=1-\frac{\eta x}{\mu +x}\) is a decreasing function with respect to \(x \ge 0\) and using the conditions \(\mu \ge 0\) and \(\eta \in (0,1]\) yields:

$$\begin{aligned}&0<\frac{\eta \varepsilon ^2}{\mu +\varepsilon ^2} \le \frac{\eta |\varDelta u(k-1)|^2}{\mu +|\varDelta u(k-1)|^2} \le \eta \le 1 \end{aligned}$$
(32)
$$\begin{aligned}&\frac{\eta |\varDelta u(k-1)|}{\mu +|\varDelta u(k-1)|^2}=\frac{\eta }{\frac{\mu }{|\varDelta u(k-1)|}+|\varDelta u(k-1)|}\nonumber \\&\quad \le \frac{\eta }{2\sqrt{\mu }} \end{aligned}$$
(33)

Recall in Remark 1 that \(|\phi (k)| \le {\bar{b}}\). Thus, by using (33), it has:

$$\begin{aligned}&|\frac{\eta \varDelta u(k-1)}{\mu +|\varDelta u(k-1)|^2}\varDelta w(k)-\phi (k)+\phi (k-1)| \nonumber \\&\quad \le |\frac{\eta \varDelta u(k-1)}{\mu +|\varDelta u(k-1)|^2}\varDelta w(k)|+|\phi (k)+\phi (k-1)| \end{aligned}$$
(34)

Recall that \(|w(k)| \le {\bar{W}}\). Thus, one can derive \(|\varDelta w(k)|=|w(k)-w(k-1)| \le |w(k)|+|w(k-1)| \le 2{\bar{W}}\). Hence, one can infer that \(0 \le |\frac{\eta \varDelta u(k-1)}{\mu +|\varDelta u(k-1)|^2}\varDelta w(k)| \le c\), c is a bounded number. Let \(\delta =1-\frac{\eta \varepsilon ^2}{\mu +\varepsilon ^2}\). Taking absolute value of both sides of formula (31) and considering formulas (32)−(34) yield:

$$\begin{aligned} \begin{aligned} |\phi _e(k)|&=|1-\frac{\eta |\varDelta u(k-1)|^2}{\mu +|\varDelta u(k-1)|^2}| |\phi _e(k-1)|\\&\quad +|\frac{\eta \varDelta u(k-1)}{\mu +|\varDelta u(k-1)|^2}\varDelta w(k)-\phi (k)\\&\quad +\phi (k-1)| \\&\le (1-\delta )|\phi _e(k-1)|+c\\&\le (1-\delta )^2|\phi _e(k-2)|+c(1-\delta )+c\\&\le \cdots \le (1-\delta )^k |\phi _e(0)|+\frac{c}{\delta }\\&\le M_1 \end{aligned} \end{aligned}$$
(35)

Formula (35) means that \(\phi _e(k)\) is bounded. By recalling the boundedness of the PPD \(\phi (k)\), it can be inferred that \({\hat{\phi }}(k)\) is bounded. Then Theorem 2 is proved.

Appendix C: Proof of Theorem 3

Denote:

$$\begin{aligned} \begin{aligned} \varepsilon (k+1)&=y_r(k+1)-y_p(k+1)-w(k+1)\\&=y^*-y_p(k+1)-w(k+1) \end{aligned} \end{aligned}$$
(36)

Then the incremental input \(\varDelta u(k)\) in formula (21) can be re-written into:

$$\begin{aligned} \varDelta u(k)=\frac{\varepsilon (k)}{{\hat{\phi }}(k)}-\frac{w(k)}{{\hat{\phi }}(k)} \end{aligned}$$
(37)

On one hand, bringing formula (4) into (36) and considering formulas (21) and (37) yield:

$$\begin{aligned} \begin{aligned} \varDelta \varepsilon (k+1)&=\varepsilon (k+1)-\varepsilon (k)\\&=y^*-y_p(k+1)-w(k+1)\\&\quad -[y^*-y_p(k)-w(k)] \\&=-\phi (k) \cdot \varDelta u(k)- \varDelta w(k+1) \\&=-\frac{{\phi }(k)}{{\hat{\phi }}(k)}\varepsilon (k)+\frac{{\phi }(k)}{{\hat{\phi }}(k)} w(k)-\varDelta w(k+1) \end{aligned} \end{aligned}$$
(38)

Thus, it has:

$$\begin{aligned} \varepsilon (k{+}1){=}[1{-}\frac{{\phi }(k)}{{\hat{\phi }}(k)}]\varepsilon (k){+}\frac{{\phi }(k)}{{\hat{\phi }}(k)} w(k)-\varDelta w(k+1) \end{aligned}$$
(39)

On the other hand, it also has:

$$\begin{aligned} |{\hat{\phi }}(k)|= & {} |\phi (k)+\phi _e(k)| \le |\phi (k)|\nonumber \\&+|\phi _e(k)| \le |\phi (k)|+M_1 \end{aligned}$$
(40)

Then, by recalling assumptions A1 and A2, it can be inferred that:

$$\begin{aligned} \frac{{\phi }(k)}{{\hat{\phi }}(k)}= & {} |\frac{\phi (k)}{\phi (k)+\phi _e(k)}| \ge \frac{\phi (k)}{|\phi (k)|+|\phi _e(k)|}\nonumber \\\ge & {} \frac{\phi (k)}{|\phi (k)|+M_1} \end{aligned}$$
(41)

Notice that \(M_1>0\). Hence, there exists a positive number \(d_2 \in (0,1)\) such that:

$$\begin{aligned} 0< & {} |1-\frac{{\phi }(k)}{{\hat{\phi }}(k)}|=1-\frac{\phi (k)}{{\hat{\phi }}(k)}\nonumber \\= & {} d_2 \le 1- \frac{\phi (k)}{|\phi (k)|+M_1} \le 1 \end{aligned}$$
(42)

It also has:

$$\begin{aligned} 0<\frac{{\phi }(k)}{{\hat{\phi }}(k)} = d_1 < 1 \end{aligned}$$
(43)

Thus, it has:

$$\begin{aligned} |\frac{{\phi }(k)}{{\hat{\phi }}(k)}w(k)- \varDelta w(k+1)| \le d_1 {\bar{W}}+2 {\bar{W}}=d_3 \end{aligned}$$
(44)

Hence, taking absolute value of both sides of formula (39) yields:

$$\begin{aligned} \begin{aligned} |\varepsilon (k+1)|&=|[1-\frac{{\phi }(k)}{{\hat{\phi }}(k)}]\varepsilon (k)+\frac{{\phi }(k)}{{\hat{\phi }}(k)} w(k)\\&\quad -\varDelta w(k+1)|\\&\le d_2|\varepsilon (k)|+d_3\\&\le d^2_2|\varepsilon (k-1)|+d_3 d_2+d_3\\&\le \cdots \le d^{k+1}_2|\varepsilon (0)|+\frac{1-d^{k-1}_2}{d_1}d_3 \end{aligned} \end{aligned}$$
(45)

Therefore, by considering formula (44), it has:

$$\begin{aligned}&\lim _{k \rightarrow \infty }|y^*-y_p(k+1)-w(k+1)|\nonumber \\&\quad =\lim _{k \rightarrow \infty }|\varepsilon (k+1)|=\frac{2+d_1}{d_1}=\lambda {\bar{W}} \end{aligned}$$
(46)

Particularly, \(w(k+1)=0 \Rightarrow {\bar{W}}=0 \Rightarrow \lim \limits _{k \rightarrow \infty }|y^*-y_p(k+1)-w(k+1)|=0\).

To prove the UUB, select following Lyapunov function:

$$\begin{aligned} V(k+1)=\varepsilon ^2(k+1) \end{aligned}$$
(47)

Bringing formula (38) into (47) yields:

$$\begin{aligned} \begin{aligned} \varDelta V(k+1)&=V(k+1)-V(k)\\&=[\varDelta \varepsilon (k+1)+\varepsilon (k)]^2-\varepsilon ^2(k)\\&=\left\{ \left[ 1-\frac{{\phi }(k)}{{\hat{\phi }}(k)}\right] ^2-1 \right\} \varepsilon ^2(k)\\&\quad +2\left[ 1-\frac{{\phi }(k)}{{\hat{\phi }}(k)}\right] \\&\quad \times \left[ \frac{{\phi }(k)}{{\hat{\phi }}(k)}w(k)-\varDelta w(k+1)\right] \varepsilon (k)\\&\quad +\left[ \frac{{\phi }(k)}{{\hat{\phi }}(k)}w(k)-\varDelta w(k+1)\right] ^2 \end{aligned} \end{aligned}$$
(48)

The rest task of the proof is to show \(\varDelta V(k+1) \le 0\).

In formula (48), denote \(a=[1-\frac{{\phi }(k)}{{\hat{\phi }}(k)}]^2-1\), \(b=2[1-\frac{{\phi }(k)}{{\hat{\phi }}(k)}][\frac{{\phi }(k)}{{\hat{\phi }}(k)}w(k)-\varDelta w(k+1)]\) and \(c=[\frac{{\phi }(k)}{{\hat{\phi }}(k)}w(k)-\varDelta w(k+1)]^2\). It is clear that \(a<0\) and \(0 \le \sqrt{\varDelta }=\sqrt{b^2-4ac}=2|\frac{{\phi }(k)}{{\hat{\phi }}(k)}w(k)-\varDelta w(k+1)| \le 2(d_1+1) {\bar{W}}\). This means that the function \(a \cdot \varepsilon ^2(k)+b \cdot \varepsilon (k)+c=0\) has solutions \(\varepsilon _1\) and \(\varepsilon _2\) (there might be \(\varepsilon _1=\varepsilon _2\)). Let \(\varepsilon _0=max\{ \varepsilon _1, \varepsilon _2 \}\). Thus, there must exist a STP \(k_0\) such that when \(k \ge k_0\), it has \(\varepsilon (k) \ge \varepsilon _0\), making \(\varDelta V(k+1) \le 0\).

Then UUB of the system is proved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, S. & Zhang, B. General regression neural network-based data-driven model-free predictive functional control for a class of discrete-time nonlinear systems. Nonlinear Dyn 107, 953–966 (2022). https://doi.org/10.1007/s11071-021-06991-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06991-2

Keywords

Navigation