Skip to main content

Advertisement

Log in

Finite-time stability and optimal impulsive control for age-structured HIV model with time-varying delay and Lévy noise

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the finite-time stability and optimal impulsive control for stochastic age-structured HIV model with time-varying delay. A stochastic noise is introduced by using the Lévy process to characterize the phenomenon of discontinuous jumps in virus transmission, which cannot be described by a continuous stochastic process (e.g., Brownian motion). By employing the comparison theorem and the bounded impulsive interval method, we obtain the sufficient conditions of finite-time stability for a stochastic HIV system. The effects of impulse, delay and Lévy noise on the finite-time stability are considered in our sufficient conditions. Furthermore, optimal impulsive control is studied to seek the optimal and cost-effective strategy for HIV treatments, which shows that control strategies play an important role in HIV virus transmissions. Numerical simulations are performed to illustrate the validity of our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

The manuscript has no associated data.

References

  1. Althaus, C.L., De Vos, A.S., De Boer, R.J.: Reassessing the Human Immunodeficiency Virus Type 1 life cycle through age-structured modeling: life span of infected cells, viral generation time, and basic reproductive number, \(R_0\). J. Virol. 83, 7659–7667 (2009)

    Article  Google Scholar 

  2. Applebaum, D.: Lévy processes and stochastic calculus, 2nd edn. Cambridge Unversity Press, Cambridge (2009)

    Book  Google Scholar 

  3. Banas, J.F., Vacroux, A.G.: Optimal piecewise constant control of continuous time systems with time-varying delay. Automatica 6, 809–811 (1970)

    Article  MathSciNet  Google Scholar 

  4. Bashier, E.B.M., Patidar, K.C.: Optimal control of an epidemiological model with multiple time delays. Appl. Math. Comput. 292, 47–56 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Blaquiere, A.: Necessary and sufficient conditions for optimal strategies in impulsive control and application. In: New Trends in Dynamic System Theory and Economics, pp. 183–213. Academic Press, New York (1977)

    Google Scholar 

  6. Blaquiere, A.: Impulsive optimal control with finite or infinite time horizon. J. Optimiz. Theory. App. 46, 431–439 (1985)

    Article  MathSciNet  Google Scholar 

  7. Cohen, M.S., Chen, Y., McCauley, M., et al.: Prevention of HIV-1 infection with early antiretroviral therapy. New Engl. J. Med. 365, 493–505 (2011)

    Article  Google Scholar 

  8. Fleming, W.H., Rishel, R.W.: Deterministic and stochastic optimal control, 1st edn. Springer, New York (1975)

    Book  Google Scholar 

  9. Haadem, S., Øksendal, B., Proske, F.: Maximum principles for jump diffusion processes with infinite horizon. Automatica 49, 2267–2275 (2013)

    Article  MathSciNet  Google Scholar 

  10. Herz, V., Bonhoeffer, S., Anderson, R., May, M., Nowak, M.: Viral dynamics in vivo: limitations on estimations on intracellular delay and virus delay. Proc. Natl. Acad. Sci. USA 93, 7247–7251 (1996)

    Article  Google Scholar 

  11. Jum, E.: Numerical approximation of stochastic differential equations driven by Lévy motion with infinitely many jumps. University of Tennessee, PhD diss (2015)

  12. Karrakchou, J., Rachik, M., Gourari, S.: Optimal control and infectiology: application to an HIV/AIDS model. Appl. Math. Comput. 177, 807–818 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Kort, H.P.M.: A tutorial on the deterministic Impulse Control Maximum Principle: Necessary and sufficient optimality conditions. Eur. J. Oper. Res. 219, 18–26 (2012)

    Article  MathSciNet  Google Scholar 

  14. Kutch, J.J., Gurfil, P.: Optimal control of HIV infection with a continuously-mutating viral population. American Control Conference, IEEE, May , 8-10 (2002)

  15. Kwon, H.D.: Optimal treatment strategies derived from a HIV model with drug-resistant mutants. Appl. Math. Comput. 188, 1193–1204 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Kwon, H.D., Lee, J., Yoon, M.: An age-structured model with immune response of HIV infection: modeling and optimal control approach. Discr. Cont. Dyn-B. 19, 153–172 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Leander, R., Lenhart, S., Protopopescu, V.: Optimal control of continuous systems with impulse controls. Optim. Control Appl. Meth. https://doi.org/10.1002/oca.2128

  18. Lin, J., Xu, R., Tian, X.: Transmission dynamics of cholera with hyperinfectious and hypoinfectious vibrios: mathematical modelling and control strategies. Math. Biosci. Eng. 16, 4339–4358 (2019)

    Article  MathSciNet  Google Scholar 

  19. Liu, S., Wang, L.: Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy. Math. Biosci. Eng. 7, 675–685 (2010)

    Article  MathSciNet  Google Scholar 

  20. Liu, H., Yu, J., Zhu, G.: Global behaviour of an age-infection-structured HIV model with impulsive drug-treatment strategy. J. Theor. Biol. 253, 749–754 (2008)

    Article  MathSciNet  Google Scholar 

  21. Ma, W., Luo, X., Zhu, Q.: Practical exponential stability of stochastic age-dependent capital system with Lévy noise. Syst. Control Lett. 144, 104759 (2020)

    Article  Google Scholar 

  22. Mao, X.: Exponential stability of stochastic differential equations. Marcel Dekker, New York (1994)

    MATH  Google Scholar 

  23. Mittler, J., Sulzer, B., Neumann, A., Perelson, A.S.: Influence of delayed virus production on viral dynamics in HIV-1 infected patients. Math. Biosci. 152, 143–163 (1998)

    Article  Google Scholar 

  24. Nelson, P.W., Perelson, A.S.: Mathematical analysis of delay differential equation models of HIV-1 infection. Math. Biosci. 179, 73–94 (2002)

    Article  MathSciNet  Google Scholar 

  25. Nelson, P.W., Gilchrist, M.A., Coombs, D., Hyman, J.M., Perelson, A.S.: An age-structured model of HIV infection that allows for variations in the production rate of viral particles and the death rate of productively infected cells. Math. Biosci. Eng. 1, 267–288 (2017)

    Article  MathSciNet  Google Scholar 

  26. Nowak, M.A., May, R.M.: Virus dynamics: mathematical principle of immunology and virology. Oxford University Press, New York (2000)

    MATH  Google Scholar 

  27. Perelson, A.S., Nelson, P.W.: Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev. 41, 3–44 (1999)

    Article  MathSciNet  Google Scholar 

  28. Piunovskiy, A., Plakhov, A., Tumanov, M.: Optimal impulse control of a SIR epidemic. Optim. Contr. Appl. Met. 41, 448–468 (2020)

    Article  MathSciNet  Google Scholar 

  29. Reilly, C., Wietgrefe, S., Sedgewick, G., Haase, A.: Determination of simmian immunodeficiency virus production by infected activated and resting cells. AIDS 21, 163–168 (2007)

    Article  Google Scholar 

  30. Rong, L., Feng, Z., Perelson, A.S.: Mathematical analysis of age-structured HIV-1 dynamics with combination antiretroviral therapy. SIAM J. Appl. Math. 67, 731–756 (2007)

    Article  MathSciNet  Google Scholar 

  31. Wang, J., Lang, J., Zou, X.: Analysis of an age structured HIV infection model with virus-to-cell infection and cell-to-cell transmission. Nonlinear Anal-Real. 34, 75–96 (2017)

    Article  MathSciNet  Google Scholar 

  32. Wu, P., Zhao, H.: Mathematical analysis of an age-structured HIV/AIDS epidemic model with HAART and spatial diffusion. Nonlinear Anal-Real 60, 103289 (2021)

    Article  MathSciNet  Google Scholar 

  33. Wu, K., Na, M., Wang, L., Ding, X., Wu, B.: Finite-time stability of impulsive reaction-diffusion systems with and without time delay. Appl. Math. Comput. 363, 124591 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Xu, J., Geng, Y., Zhou, Y.: Global dynamics for an age-structured HIV virus infection model with cellular infection and antiretroviral therapy. Appl. Math. Comput. 305, 62–83 (2017)

    MathSciNet  MATH  Google Scholar 

  35. Xu, R., Tian, X., Zhang, S.: An age-structured within-host HIV-1 infection model with virus-to-cell and cell-to-cell transmissions. J. Biol. Dyn. 12, 89–117 (2018)

    Article  MathSciNet  Google Scholar 

  36. Yan, P.: Impulsive SUI epidemic model for HIV/AIDS with chronological age and infection age. J. Theor. Biol. 265, 177–184 (2010)

    Article  MathSciNet  Google Scholar 

  37. Yang, Z., Xu, D.: Stability analysis and design of impulsive control systems with time delay. IEEE Trans. Autom. Control 52, 1448–1454 (2007)

    Article  MathSciNet  Google Scholar 

  38. Yang, Y., Zou, L., Ruan, S.: Global dynamics of a delayed within-host viral infection model with both virus-to-cell and cell-to-cell transmissions. Math. Biosci. 270, 183–191 (2015)

    Article  MathSciNet  Google Scholar 

  39. Yong, J., Zhou, X.: Stochastic controls: Hamiltonian systems and HJB equations. Springer, New York (1999)

    Book  Google Scholar 

  40. Yuan, Y., Allen, L.J.S.: Stochastic models for virus and immune system dynamics. Mathe. Biosci. 234, 84–94 (2011)

    Article  MathSciNet  Google Scholar 

  41. Zhao, S., Yuan, S., Wang, H.: Threshold behavior in a stochastic algal growth model with stoichiometric constraints and seasonal variation. J. Differ. Equations, https://doi.org/10.1016/j.jde.2019.11.004

  42. Zhou, Y.G., et al.: Global dynamics for an age-structured HIV virus infection model with cellular infection and antiretroviral therapy. Appl. Math. Comput. 305, 62–83 (2017)

    MathSciNet  MATH  Google Scholar 

  43. Zhou, A., Yuan, S., Zhao, D.: Threshold behavior of a stochastic SIS model with Lévy jumps. Appl. Mathe. Comput. 275, 255–267 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (No. 12161068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qimin Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The proof of Theorem 2.4

Proof

Since the coefficients of system (8) are locally Lipschitz continuous, for any given initial data \(\{\Phi (t):-{\bar{\tau }}\le t\le 0\}\in {\mathcal {H}}\), there is a unique maximal local solution \(\big (X(t),Y(\cdot ,t),V(t)\big )\) on \(t\in [-{\bar{\tau }},\tau _e]\), where \(\tau _e\) is the explosion time (see [22]). Let \(n_0>0\) be sufficiently large for

$$\begin{aligned} \frac{1}{n_0}<\min \limits _{-{\bar{\tau }}\le t\le 0}|\Phi (t)|<\max \limits _{-{\bar{\tau }}\le t\le 0}|\Phi (t)|<n_0. \end{aligned}$$

For each integer \(n\ge n_0\), define the stopping time

$$\begin{aligned} \tau _n= & {} \inf \{t\in [0,\tau _e]: \min \{X(t),Y(\cdot ,t),V(t)\}\\\le & {} \frac{1}{n} ~\text {or}~ \max \{X(t),Y(\cdot ,t),V(t)\}\ge n\}. \end{aligned}$$

Set \(\inf \emptyset =\infty \) (\(\emptyset \) represents the empty set). \(\tau _n\) increases as \(n\rightarrow \infty \). Let \(\tau _\infty = \lim \limits _{n\rightarrow \infty }\tau _n\), then \(\tau _\infty \le \tau _e\) a.s. In what follows, if we can show that \(\tau _\infty =\infty \) a.s., then \(\tau _e=\infty \) a.s. and \(\big (X(t),Y(\cdot ,t),V(t)\big )\in {\mathscr {X}}\) a.s. Before showing this, we first show the boundedness of the global solution. Since \(\big (X(t),Y(\cdot ,t),V(t)\big )\) is positive on \([0,\tau _n)\), and

$$\begin{aligned}&\big (x(t),y(a,t),v(t)\big )\\&\quad =\big (A_1(t)X(t),A_2(t)Y(a,t),A_3(t)V(t)\big ), \end{aligned}$$

according to (A1) and the define of \(A_i(t)\) given by (10), it is obvious that \(A_i(t)\) is positive and bounded. Thus, \(\big (x(t),y(\cdot ,t),v(t)\big )\) is also positive on \([0,\tau _n)\). For any \(t\ne t_k\), adding the first and second equation of (7), and it follows from (A2) that

$$\begin{aligned}&\mathrm {d}\Big (x(t)+\int _0^Ay(a,t+\tau (t))\mathrm {d}a\Big )\\&\quad =\Big [\lambda -d'x(t)-\beta _1x(t)v(t)\\&\qquad -x(t)\int _0^A \beta (a)y(a,t)\mathrm {d}a\\&\qquad -\int _0^A\frac{\partial y(a,t+\tau (t))}{\partial a}\mathrm {d}a\\&\qquad -\int _0^A\mu _1'\mu _2(a) y(a,t+\tau (t))\mathrm {d}a\Big ]\mathrm {d}t\\&\qquad -\sigma _1'x(t)\mathrm {d}B_1(t)-x(t^-)\int _{{\mathbb {Y}}}\gamma _1(\nu ){\tilde{N}}(\mathrm {d}t,\mathrm {d}\nu )\\&\qquad -\sigma _2'\int _0^A\mu _2(a)y(a,t+\tau (t))\mathrm {d}a\mathrm {d}B_2(t)\\&\qquad -\int _0^A\int _{{\mathbb {Y}}}\gamma _2(\nu ){\tilde{N}}(\mathrm {d}t, \mathrm {d}\nu )\mu _2(a)y(a,t^-+\tau (t))\mathrm {d}a\\&\quad =\Big [\lambda -d'x(t)-\beta _1x(t)v(t)\\&\qquad -x(t)\int _0^A\beta (a)y(a,t)\mathrm {d}a-y(a,t+\tau (t))|_0^A\\&\qquad -\int _0^A\mu _1'\mu _2(a) y(a,t+\tau (t))\mathrm {d}a\Big ]\mathrm {d}t\\&\qquad -\sigma _1'x(t)\mathrm {d}B_1(t)-x(t^-)\int _{{\mathbb {Y}}}\gamma _1(\nu ){\tilde{N}}(\mathrm {d}t,\mathrm {d}\nu )\\&\qquad -\sigma _2'\int _0^A\mu _2(a)y(a,t+\tau (t))\mathrm {d}a\mathrm {d}B_2(t)\\&\qquad -\int _0^A\int _{{\mathbb {Y}}}\gamma _2(\nu ){\tilde{N}}(\mathrm {d}t, \mathrm {d}\nu )\mu _2(a)y(a,t^-+\tau (t))\mathrm {d}a\\&\quad \le \Big [\lambda -d'x(t)-\mu _1'{\underline{\mu }}_2\int _0^A y(a,t+\tau (t))\mathrm {d}a\Big ]\mathrm {d}t\\&\qquad -\sigma _1'x(t)\mathrm {d}B_1(t)-x(t^-)\int _{{\mathbb {Y}}}\gamma _1(\nu ){\tilde{N}}(\mathrm {d}t,\mathrm {d}\nu )\\&\qquad -\sigma _2'{\underline{\mu }}_2\int _0^Ay(a,t+\tau (t))\mathrm {d}a\mathrm {d}B_2(t)\\&\qquad -{\underline{\mu }}_2\int _0^A\int _{{\mathbb {Y}}}\gamma _2(\nu ){\tilde{N}}(\mathrm {d}t, \mathrm {d}\nu )y(a,t^-+\tau (t))\mathrm {d}a\\&\quad =\Big [\lambda -\alpha \Big (x(t)+\int _0^A y(a,t+\tau (t))\mathrm {d}a\Big )\Big ]\mathrm {d}t+M(t), \end{aligned}$$

where \(\alpha =\min \{d',\mu _1'{\underline{\mu }}_2\}\) and

$$\begin{aligned} \begin{aligned} M(t)=&-\sigma _1'x(t)\mathrm {d}B_1(t)-x(t^-)\int _{{\mathbb {Y}}}\gamma _1(\nu ){\tilde{N}}(\mathrm {d}t,\mathrm {d}\nu )\\&-\sigma _2'{\underline{\mu }}_2\int _0^Ay(a,t+\tau (t))\mathrm {d}a\mathrm {d}B_2(t)\\&-{\underline{\mu }}_2\int _0^A\int _{{\mathbb {Y}}}\gamma _2(\nu ){\tilde{N}}(\mathrm {d}t, \mathrm {d}\nu )y(a,t^-+\tau (t))\mathrm {d}a. \end{aligned} \end{aligned}$$

Making use of the stochastic comparison theorem [41] and the method of variation of constant, we know that there exists a positive constant \(K'\) such that

$$\begin{aligned} x(t)+\int _0^Ay(a,t+\tau )\mathrm {d}a\le K', \quad a.s. \end{aligned}$$

For the third equation of system (7), we have

$$\begin{aligned}&\mathrm {d}v(t+\tau (t))\\&\quad =\Big [\int _0^A k(a)e^{-m_2\tau (t)}y(a,t)\mathrm {d}a-c'v(t+\tau (t))\Big ]\mathrm {d}t\\&\qquad -\sigma _3'v(t+\tau (t))\mathrm {d}B_3(t)\\&\qquad -v(t^-+\tau (t))\int _{{\mathbb {Y}}}\gamma _3(\nu ){\tilde{N}}(\mathrm {d}t,\mathrm {d}\nu )\\&\quad \le \Big [{\bar{k}}\int _0^A y(a,t)\mathrm {d}a-c'v(t+\tau (t))\Big ]\mathrm {d}t\\&\qquad -\sigma _3'v(t+\tau (t))\mathrm {d}B_3(t)\\&\qquad -v(t^-+\tau (t))\int _{{\mathbb {Y}}}\gamma _3(\nu ){\tilde{N}}(\mathrm {d}t,\mathrm {d}\nu )\\&\quad \le \Big [{\bar{k}}K'-c'v(t+\tau (t))\Big ]\mathrm {d}t-\sigma _3'v(t+\tau (t))\mathrm {d}B_3(t)\\&\qquad -v(t^-+\tau (t))\int _{{\mathbb {Y}}}\gamma _3(\nu ){\tilde{N}}(\mathrm {d}t,\mathrm {d}\nu ). \end{aligned}$$

The stochastic comparison theorem implies that

$$\begin{aligned} x(t)+\int _0^Ay(a,t)\mathrm {d}a+v(t)< \infty , \quad a.s. \end{aligned}$$

For \(t=t_k\), based on (A1), the same result can be obtained. Therefore, there exists a positive constant K such that

$$\begin{aligned} X(t)+\int _0^AY(a,t)\mathrm {d}a+V(t)\le K, \quad a.s. \end{aligned}$$
(29)

Next we prove that \(\tau _\infty = \lim \limits _{n\rightarrow \infty }\tau _n=\infty \) a.s. Let \(W(t)=(X(t),Y(\cdot ,t),V(t))\), define a Lyapunov function

$$\begin{aligned} V(W(t))=X^2(t)+\int _0^AY^2(a,t)\mathrm {d}a+V^2(t), \end{aligned}$$

Let \(T>0\) be arbitrary, for any \(0\le t\le \tau _n\wedge T\), by Itô formula, we have

$$\begin{aligned} \mathrm {d}V(W(t))=&2X(t)\Big [\lambda A_1^{-1}(t)-(d'-\ln (1+I_{1k}))X(t) \\&-\beta _1X(t)A_3(t)V(t) \\&-X(t)\int _0^A \beta (a)A_2(t)Y(a,t)\mathrm {d}a\Big ]\mathrm {d}t \\&+(\sigma _1')^2X^2(t)\mathrm {d}t-2\sigma _1'X^2(t)\mathrm {d}B_1(t) \\&+\int _{{\mathbb {Y}}}\Big \{\big (X(t)-X(t)\gamma _1(\nu )\big )^2-X^2(t)\Big \}{\tilde{N}}(\mathrm {d}t,\mathrm {d}\nu ) \\&+\int _{{\mathbb {Y}}}\Big \{\big (X(t)-X(t)\gamma _1(\nu )\big )^2-X^2(t) \\&+2X^2(t)\gamma _1(\nu )\Big \}\eta (\mathrm {d}\nu )\mathrm {d}t \\&+2\int _0^AY(a,t)\Big [-\frac{\partial Y(a,t)}{\partial a}-\big (\mu _1'\mu _2(a) \\&-\ln (1+I_{2k})\big ) Y(a,t)\Big ]\mathrm {d}a\mathrm {d}t \\&+\int _0^A(\sigma _2'\mu _2(a))^2Y^2(a,t)\mathrm {d}a\mathrm {d}t \\&-2\int _0^A\sigma _2'\mu _2(a)Y^2(a,t)\mathrm {d}a\mathrm {d}B_2(t) \\&+\int _{{\mathbb {Y}}}\Big \{\int _0^A\big (Y(a,t)-\mu _2(a)Y(a,t)\gamma _2(\nu )\big )^2\mathrm {d}a \\&-\int _0^AY^2(a,t)\mathrm {d}a\Big \}{\tilde{N}}(\mathrm {d}t,\mathrm {d}\nu ) \\&+\int _{{\mathbb {Y}}}\Big \{\int _0^A\big (Y(a,t)-\mu _2(a)Y(a,t)\gamma _2(\nu )\big )^2\mathrm {d}a \\&-\int _0^AY^2(a,t)\mathrm {d}a \\&+2\int _0^AY(a,t)\mathrm {d}a\mu _2(a)Y(a,t)\gamma _2(\nu )\Big \}\eta (\mathrm {d}\nu )\mathrm {d}t \\&+2V(t)\Big [\int _0^A k(a)e^{-m_2\tau (t)}A_3^{-1}(t)A_2(t)Y(a,t\\&-\tau (t))\mathrm {d}a -(c'-\ln (1+I_{3k}))V(t)\Big ]\mathrm {d}t \\&+(\sigma _3')^2V^3(t)\mathrm {d}t-2\sigma _3'V^2(t)\mathrm {d}B_3(t) \\&+\int _{{\mathbb {Y}}}\Big \{\big (V(t)-V(t)\gamma _3(\nu )\big )^2-V^2(t)\Big \}{\tilde{N}}(\mathrm {d}t,\mathrm {d}\nu ) \\&+\int _{{\mathbb {Y}}}\Big \{\big (V(t)-V(t)\gamma _3(\nu )\big )^2 \\&-V^2(t)+2V^2(t)\gamma _3(\nu )\Big \}\eta (\mathrm {d}\nu )\mathrm {d}t \end{aligned}$$
$$\begin{aligned} :=&{\mathcal {L}}V\mathrm {d}t-2\sigma _1'X^2(t)\mathrm {d}B_1(t)\nonumber \\&+\int _{{\mathbb {Y}}}\Big \{\big (X(t)-X(t)\gamma _1(\nu )\big )^2-X^2(t)\Big \}{\tilde{N}}(\mathrm {d}t,\mathrm {d}\nu )\nonumber \\&-2\int _0^A\sigma _2'\mu _2(a)Y^2(a,t)\mathrm {d}a\mathrm {d}B_2(t)\nonumber \\&+\int _{{\mathbb {Y}}}\Big \{\big (V(t)-V(t)\gamma _3(\nu )\big )^2-V^2(t)\Big \}{\tilde{N}}(\mathrm {d}t,\mathrm {d}\nu )\nonumber \\&+\int _{{\mathbb {Y}}}\Big \{\int _0^A\big (Y(a,t)-\mu _2(a)Y(a,t)\gamma _2(\nu )\big )^2\mathrm {d}a\nonumber \\&-\int _0^AY^2(a,t)\mathrm {d}a\Big \}{\tilde{N}}(\mathrm {d}t,\mathrm {d}\nu )-2\sigma _3'V^2(t)\mathrm {d}B_3(t), \end{aligned}$$
(30)

where \({\mathcal {L}}V=J_1+J_2+J_3\) with

$$\begin{aligned} J_1=&2X(t)\Big [\lambda A_1^{-1}(t)-(d'-\ln (1+I_{1k}))X(t)\\&-\beta _1X(t)A_3(t)V(t)\\&-X(t)\int _0^A \beta (a)A_2(t)Y(a,t)\mathrm {d}a\Big ]\\&+(\sigma _1')^2X^2(t)+\int _{{\mathbb {Y}}}\Big \{\big (X(t)-X(t)\gamma _1(\nu )\big )^2\\&-X^2(t)+2X^2(t)\gamma _1(\nu )\Big \}\eta (\mathrm {d}\nu ),\\ J_2=&2\int _0^AY(a,t)\Big [-\frac{\partial Y(a,t)}{\partial a}\\&-\big (\mu _1'\mu _2(a)-\ln (1+I_{2k})\big )Y(a,t)\Big ]\mathrm {d}a\\&+\int _0^A(\sigma _2'\mu _2(a))^2Y^2(a,t)\mathrm {d}a\\&+\int _{{\mathbb {Y}}}\Big \{\int _0^A\big (Y(a,t)-\mu _2(a)Y(a,t)\gamma _2(\nu )\big )^2\mathrm {d}a\\&-\int _0^AY^2(a,t)\mathrm {d}a\\&+2\int _0^AY(a,t)\mathrm {d}a\mu _2(a)Y(a,t)\gamma _2(\nu )\Big \}\eta (\mathrm {d}\nu ),\\ J_3=&2V(t)\Big [\int _0^A k(a)e^{-m_2\tau (t)}A_3^{-1}(t)A_2(t\\&-\tau (t))Y(a,t-\tau (t))\mathrm {d}a\\&-(c'-\ln (1+I_{3k}))V(t)\Big ]\\&+(\sigma _3')^2V^2(t)+\int _{{\mathbb {Y}}}\Big \{\big (V(t)-V(t)\gamma _3(\nu )\big )^2\\&-V^2(t)+2V^2(t)\gamma _3(\nu )\Big \}\eta (\mathrm {d}\nu ). \end{aligned}$$

According to (A1), (A2), (A3) and formula (29), we obtain

$$\begin{aligned} \begin{aligned} J_1\le&2X(t)\lambda A_1^{-1}(t)+2X^2(t)\ln (1+I_{1k})\\&+(\sigma _1')^2X^2(t)+X^2(t)\int _{{\mathbb {Y}}}\gamma _1^2(\nu )\eta (\mathrm {d}\nu )\\ \le&\lambda ^2 {\underline{A}}_1^{-2}+X^2(t)\Big [1+2\ln (1+I_{1k})+(\sigma _1')^2+C_0\Big ],\\ J_2\le&-Y^2(a,t)\Big |_0^A+2\ln (1+I_{2k})\int _0^AY^2(a,t)\mathrm {d}a\\&+(\sigma _2'{\bar{\mu }}_2)^2\int _0^AY^2(a,t)\mathrm {d}a\\&+{\bar{\mu }}_2^2\int _{{\mathbb {Y}}}\gamma _2^2(\nu )\eta (\mathrm {d}\nu )\int _0^AY^2(a,t)\mathrm {d}a\\ \le&\beta _1^2X^2(t-\tau (t))V^2(t-\tau (t))\\&+{\bar{\beta }}^2X^2(t-\tau (t))\int _0^AY^2(a,t-\tau (t))\mathrm {d}a\\&+\Big [2\ln (1+I_{2k})+(\sigma _2'{\bar{\mu }}_2)^2\\&+{\bar{\mu }}_2^2C_0\Big ]\int _0^AY^2(a,t)\mathrm {d}a,\\ J_3\le&V^2(t)+{\bar{k}}^2A_3^{-2}(t)\\&\Big [\int _0^AA_2(t-\tau (t))Y(a,t-\tau (t))\mathrm {d}a\Big ]^2\\&+V^2(t)2\ln (1+I_{3k})+(\sigma _3')^2X^2(t)+C_0V^2(t)\\ \le&{\bar{k}}^2{\underline{A}}_3^{-2}\Big [\int _0^AA_2(t-\tau (t))Y(a,t-\tau (t))\mathrm {d}a\Big ]^2\\&+V^2(t)\Big [1+2\ln (1+I_{3k})+(\sigma _3')^2+C_0\Big ]. \end{aligned} \end{aligned}$$

Now, for any \(n\ge n_0\), we integrate the both sides of (30) from 0 to \(\tau _n\wedge T\) and then take the expectations to derive

$$\begin{aligned}&{\mathbb {E}}V(W(\tau _n\wedge T))\\&\quad \le V(W(0))+\lambda ^2 {\underline{A}}_1^{-2}(\tau _n\wedge T)\\&\qquad +\Big [1+2\check{b}+(\sigma _1')^2+C_0\Big ]\int _0^{\tau _n\wedge T}X^2(t)\mathrm {d}t\\&\qquad +\beta _1^2\int _0^{\tau _n\wedge T}X^2(t-\tau (t))V^2(t-\tau (t))\mathrm {d}t\\&\qquad +{\bar{\beta }}^2\int _0^{\tau _n\wedge T}\int _0^AX^2(t-\tau (t))Y^2(a,t-\tau (t))\mathrm {d}a\mathrm {d}t\\&\qquad +\Big [2\check{b}+(\sigma _2'{\bar{\mu }}_2)^2+{\bar{\mu }}_2^2C_0\Big ]\\&\qquad \int _0^{\tau _n\wedge T}\int _0^AY^2(a,t)\mathrm {d}a\mathrm {d}t\\&\qquad +{\bar{k}}^2{\underline{A}}_3^{-2} \\&\qquad \int _0^{\tau _n\wedge T}\Big [\int _0^AA_2(t-\tau (t))Y(a,t-\tau (t))\mathrm {d}a\Big ]^2\mathrm {d}t\\&\qquad +\Big [1+2\check{b}+(\sigma _3')^2+C_0\Big ]\int _0^{\tau _n\wedge T}V^2(t)\mathrm {d}t, \end{aligned}$$

where \(\check{b}=\sup \{\ln (1+I_{ik})\}~(i=1,2,3)\). Since

$$\begin{aligned} \begin{aligned}&\beta _1^2\int _0^{\tau _n\wedge T}X^2(t-\tau (t))V^2(t-\tau (t))\mathrm {d}t\\&\quad \le \beta _1^2\frac{1}{1-\zeta }\int _{-\tau (t)}^{\tau _n\wedge T-\tau (t)}X^2(t)V^2(t)\mathrm {d}t\\&\quad \le \frac{\beta _1^2}{1-\zeta }K^4(\tau _n\wedge T), \end{aligned} \end{aligned}$$

Similarly, we have

$$\begin{aligned} \begin{aligned}&{\bar{\beta }}^2\int _0^{\tau _n\wedge T}\int _0^AX^2(t-\tau (t))Y^2(a,t-\tau (t))\mathrm {d}a\mathrm {d}t\\&\quad = {\bar{\beta }}^2\frac{1}{1-\zeta }\int _{-\tau (t)}^{\tau _n\wedge T-\tau (t)}\int _0^AX^2(t)Y^2(a,t)\mathrm {d}a\mathrm {d}t\\&\quad \le \frac{{\bar{\beta }}^2K^2}{1-\zeta }\int _{-{\bar{\tau }}}^0\int _0^AY^2(a,t)\mathrm {d}a\mathrm {d}t\\&\qquad +\frac{{\bar{\beta }}^2K^2}{1-\zeta }\int _0^{\tau _n\wedge T}\int _0^AY^2(a,t)\mathrm {d}a\mathrm {d}t, \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned}&{\bar{k}}^2{\underline{A}}_3^{-2}\int _0^{\tau _n\wedge T}\Big [\int _0^AA_2(t-\tau (t))Y(a,t-\tau (t))\mathrm {d}a\Big ]^2\mathrm {d}t\\&\quad \le \frac{1}{1-\zeta }{\bar{k}}^2{\underline{A}}_3^{-2}{\bar{A}}_2^2\int _{-{\bar{\tau }}}^{\tau _n\wedge T-\tau (t)}\Big [\int _0^AY(a,t)\mathrm {d}a\Big ]^2\mathrm {d}t\\&\quad \le \frac{{\bar{k}}^2{\underline{A}}_3^{-2}{\bar{A}}_2^2K^2}{1-\zeta }\big (\tau _n\wedge T\big ). \end{aligned} \end{aligned}$$

Thus, we obtain

$$\begin{aligned}&{\mathbb {E}}V(W(\tau _n\wedge T))\\&\quad \le V(W(0))+\lambda ^2 {\underline{A}}_1^{-2}(\tau _n\wedge T)\\&\qquad +\Big [1+2\check{b}+(\sigma _1')^2+C_0\Big ]\int _0^{\tau _n\wedge T}X^2(t)\mathrm {d}t\\&\qquad +\frac{1}{1-\zeta }\beta _1^2K^4\big (\tau _n\wedge T\big )+\frac{1}{1-\zeta }{\bar{k}}^2{\underline{A}}_3^{-2}{\bar{A}}_2^2K^2\big (\tau _n\wedge T\big )\\&\qquad +\frac{1}{1-\zeta }{\bar{\beta }}^2K^2\int _{-{\bar{\tau }}}^0\int _0^AY^2(a,t)\mathrm {d}a\mathrm {d}t\\&\qquad +\frac{1}{1-\zeta }{\bar{\beta }}^2K^2\int _0^{\tau _n\wedge T}\int _0^AY^2(a,t)\mathrm {d}a\mathrm {d}t\\&\qquad +\Big [2\check{b}+(\sigma _2'{\bar{\mu }}_2)^2+{\bar{\mu }}_2^2C_0\Big ]\int _0^{\tau _n\wedge T}\int _0^AY^2(a,t)\mathrm {d}a\mathrm {d}t\\&\qquad +\Big [1+2\check{b}+(\sigma _3')^2+C_0\Big ]\int _0^{\tau _n\wedge T}V^2(t)\mathrm {d}t\\&\quad \le C_1+C_2\int _0^{\tau _n\wedge T}\Big (X^2(t)\\&\qquad +\int _0^AY^2(a,t)\mathrm {d}a+V^2(t)\Big )\mathrm {d}t\\&\quad =C_1+C_2\int _0^{\tau _n\wedge T}V(Z(t))\mathrm {d}t, \end{aligned}$$

where

$$\begin{aligned} \begin{aligned} C_1=&V(W(0))+\lambda ^2 {\underline{A}}_1^{-2}(\tau _n\wedge T)\\&+\frac{1}{1-\zeta }\beta _1^2K^4\big (\tau _n\wedge T\big )\\&\frac{1}{1-\zeta }{\bar{k}}^2{\underline{A}}_3^{-2}{\bar{A}}_2^2K^2\big (\tau _n\wedge T\big )\\&+\frac{1}{1-\zeta }{\bar{\beta }}^2K^2\int _{-{\bar{\tau }}}^0\int _0^AY^2(a,t)\mathrm {d}a\mathrm {d}t\\ <&\infty , \end{aligned} \end{aligned}$$

and according to (A2), we choose

$$\begin{aligned} \begin{aligned} C_2=1+2\check{b}+({\hat{\sigma }}')^2+C_0+\frac{1}{1-\zeta }{\bar{\beta }}^2K^2. \end{aligned} \end{aligned}$$

Using Gronwall inequality, we obtain

$$\begin{aligned} {\mathbb {E}}V(W(\tau _n\wedge T))\le C_1e^{C_2T}, \quad \forall ~n\ge n_0. \end{aligned}$$
(31)

Define

$$\begin{aligned} \mu _n=\inf \limits _{|W|\ge n, 0\le t<\infty }V(W(t)),~~~\text {for any} ~n\ge n_0. \end{aligned}$$

Then from (31), we know

$$\begin{aligned} \mu _n{\mathbb {P}}(\tau _n\le T)\le C_1e^{C_2T}. \end{aligned}$$
(32)

It is straightforward to drive \(\lim \limits _{|Z|\rightarrow \infty }\inf \limits _{0\le t<\infty }V(W(t))=\infty \), thus \(\lim \limits _{n\rightarrow \infty }\mu _n=\infty \). Letting \(n\rightarrow \infty \) in the inequality (32), we obtain \({\mathbb {P}}(\tau _n\le T)=0\), namely,\( {\mathbb {P}}(\tau _n>T)=1. \)

Thus, the required assertion is obtained. Hence, we complete the proof. \(\square \)

Appendix B: Numerical algorithm of control

figure a

where

$$\begin{aligned} \begin{aligned} \text {Term}_1=&\Big [\lambda -d'x_j-(1-(u_1)_j)\beta _1x_jv_j\\&-x_j\sum _{i=1}^{A/\Delta a} \beta (i\Delta a)y_{i,j}\Delta a\Big ]\Delta t\\&-\sigma _1'x_j\sqrt{\Delta t}\xi _j\\&-\frac{{\sigma _1'}^2}{2}x_j(\xi _j^2-1)\Delta t-\gamma _1 x_j\sum _{k=1}^\infty V_k\Gamma _k^{-\frac{1}{\alpha }}, \\ \text {Term}_2=&\Big [-\mu _1'\mu _2(i\Delta a)y_{i,j}\Big ]\Delta t\\&-\sigma _2'\mu _2(i\Delta a)y_{i,j}\sqrt{\Delta t}\xi _j\\&-\frac{{\sigma _2'}^2\mu _2^2(i\Delta a)}{2}y_{i,j}(\xi _j^2-1)\Delta t\\&-\gamma _2 \mu _2(i\Delta a) y_{i,j}\sum _{k=1}^\infty V_k\Gamma _k^{-\frac{1}{\alpha }},\\ \text {Term}_3=&\Big [(1-u_{2j})\sum _{i=1}^{N} k(i\Delta a)\\&e^{-m \tau (j\Delta t)}y_{i,j-\tau (j\Delta t)/\Delta t}\Delta a-c'v_j\Big ]\Delta t\\&-\sigma _3'v_j\sqrt{\Delta t}\xi _j\\&-\frac{{\sigma _3'}^2}{2}v_j(\xi _j^2-1)\Delta t-\gamma _3 v_j\sum _{k=1}^\infty V_k\Gamma _k^{-\frac{1}{\alpha }},\\ \text {Project}_1=&\Big [(p_1)_n\big (d'+(1-(u_1)_j)\beta _1v_j\\&+\sum _{i=1}^{A/\Delta a} \beta (i\Delta a)y_{i,j}\big )+\gamma _1r_1+q_1\sigma _1'+F_1\\&-\chi _{[0,T-\tau ]}\big ((1-(u_1)_j)\beta _1v_{j-m}\\&+\sum _{i=1}^{N} \beta (i\Delta a)y_{i,j-m}\Delta a\big )e^{-m_1\tau }(p_2)_{1,n+m}\Big ]\Delta t\\&+q_1\sqrt{\Delta t}\xi _j+r_1\sum _{k=1}^\infty V_k\Gamma _k^{-\frac{1}{\alpha }}, \end{aligned} \end{aligned}$$
$$\begin{aligned} \text {Project}_2=&\Big [-\chi _{[0,T-\tau ]}x_{j-m}e^{-m_1\tau }\beta (i\Delta a)(p_2)_{1,j+m}\\&+(p_1)_nx_{j}\beta (i\Delta a)+(p_2)_{i,n}\mu _1'\mu _2(i\Delta a)\\&+\mu _2(i\Delta a)\gamma _2r_2+q_2\sigma _2'\mu _2(i\Delta a)\\&-\chi _{[0,T-\tau ]}(1-(u_2)_j)e^{-m_2\tau }(p_3)_{n+m}k(i\Delta a)\Big ]\Delta t\\&+q_2\sqrt{\Delta t}\xi _j+r_2\sum _{k=1}^\infty V_k\Gamma _k^{-\frac{1}{\alpha }},\\ \text {Project}_3=&\Big [(p_1)_n(1-(u_1)_j)\beta _1x_j+c'(p_3)_n\\&-\chi _{[0,T-\tau ]}(1-(u_1)_j)\beta _1x_{j-m}e^{-m_1\tau }(p_2)_{1,n+m}\\&+q_3\sigma _3'+\gamma _3r_3-F_2\Big ]\Delta t\\&+q_3\sqrt{\Delta t}\xi _j+r_3\sum _{k=1}^\infty V_k\Gamma _k^{-\frac{1}{\alpha }}, \end{aligned}$$

with \(\alpha \in (0,2)\), \(\{V_k\}_{k\ge 1}\) is an independent and identically distributed (i.i.d.) random sequence such that \({\mathbb {P}}(V_k=\pm 1)=\frac{1}{2}\), which is independent of the random sequence \(\{\Gamma _k\}_{k\ge 1}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, W., Zhang, Q., Li, X. et al. Finite-time stability and optimal impulsive control for age-structured HIV model with time-varying delay and Lévy noise. Nonlinear Dyn 106, 3669–3696 (2021). https://doi.org/10.1007/s11071-021-06974-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06974-3

Keywords

Navigation