Skip to main content
Log in

Dynamics of mutually coupled quantum dot spin-VCSELs subject to key parameters

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A symmetric model based on optically pumped quantum dot (QD) spin-polarized vertical cavity surface emitting lasers (spin-VCSELs) subject to mutual coupling is proposed. Compared with the conventional solitary model, more plentiful dynamical regimes associated with different dynamical regions are displayed visually by numerous bifurcation maps, and the detailed direct numerical simulations accurately reveal the dependence of dynamical behavior on external and internal parameters through introducing mutual coupling scheme. We then find that the roles played by the mutual coupling strength and delay time are remarkably significant in intensifying the regime of complex dynamical oscillation. Beyond that, the crucial effects of capture rate, gain parameter, linewidth enhancement factor and frequency detuning on determining the evolvement of dynamical behavior in the mutually coupled QD spin-VCSELs model are shown evidently in the plane of the optical pump intensity and polarization. Through a comprehensive investigation of the dynamical behavior dependent on key parameters, the dynamical mechanism expressed in the current model can be adjusted and even controlled well. Therefore, the involved efforts are enlightening and foresighted to promote a deeply research in the field of QD lasers-based expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Koyama, F.: Recent advances of VCSEL photonics. J. Lightwave Technol. 24, 4502–4513 (2006)

    Article  Google Scholar 

  2. Bai, Y., Slivken, S., Kuboya, S., Darvish, S.R., Razeghi, M.: Quantum cascade lasers that emit more light than heat. Nat. Photonics 4, 99–102 (2010)

    Article  Google Scholar 

  3. Zhong, D.Z., Yang, H., Xi, J.T., Zeng, N., Xu, Z.: Exploring new chaotic synchronization properties in the master-slave configuration based on three laterally coupled semiconductor lasers with self-feedback. Opt. Express 28, 25778–25794 (2020)

    Article  Google Scholar 

  4. Lin, F.Y., Liu, J.M.: Nonlinear dynamics of a semiconductor laser with delayed negative optoelectronic feedback. IEEE J. Quantum Electron. 39, 562–568 (2003)

    Article  Google Scholar 

  5. Tang, S., Vicente, R., Chiang, M.C., Mirasso, C.R., Liu, J.M.: Nonlinear dynamics of semiconductor lasers with mutual optoelectronic coupling. IEEE J. Sel. Top. Quantum Electron. 10, 936–943 (2004)

    Article  Google Scholar 

  6. Toomey, J.P., Kane, D.M., Lee, M.W., Shore, K.A.: Nonlinear dynamics of semiconductor lasers with feedback and modulation. Opt. Express 18, 16955–16972 (2010)

    Article  Google Scholar 

  7. Toomey, J.P., Nichkawde, C., Kane, D.M., Schires, K., Henning, I.D., Hurtado, A., Adams, M.J.: Stability of the nonlinear dynamics of an optically injected VCSEL. Opt. Express 20, 10256–10270 (2012)

    Article  Google Scholar 

  8. Erneux, T., Kovanis, V., Gavrielides, A.: Nonlinear dynamics of an injected quantum cascade laser. Phy. Rev. E 88, 032907 (2013)

    Article  Google Scholar 

  9. Dong, J.X., Zhuang, J.P., Chan, S.C.: Tunable switching between stable and periodic states in a semiconductor laser with feedback. Opt. Lett. 42, 4291–4294 (2017)

    Article  Google Scholar 

  10. Li, N.Q., Nguimdo, R.M., Locquet, A., Citrin, D.S.: Enhancing optical-feedback-induced chaotic dynamics in semiconductor ring lasers via optical injection. Nonlinear Dyn. 92, 315–324 (2018)

    Article  Google Scholar 

  11. Qiao, L.J., Lv, T.S., Xu, Y., Zhang, M.J., Zhang, J.Z., Wang, T., Zhou, R.K., Wang, Q., Xu, H.C.: Generation of flat wideband chaos based on mutual injection of semiconductor lasers. Opt. Lett. 44, 5394–35397 (2019)

    Article  Google Scholar 

  12. Xiang, S.Y., Han, Y.N., Wang, H.N., Wen, A.J., Hao, Y.: Zero-lag chaos synchronization properties in a hierarchical tree-type network consisting of mutually coupled semiconductor lasers. Nonlinear Dyn. 99, 2893–2906 (2020)

    Article  Google Scholar 

  13. Ma, Y.T., Xiang, S.Y., Guo, X.X., Song, Z.W., Wen, A.J., Hao, Y.: Time-delay signature concealment of chaos and ultrafast decision making in mutually coupled semiconductor lasers with a phase-modulated Sagnac loop. Opt. Express 28, 1665–1678 (2020)

    Article  Google Scholar 

  14. Xie, Y.Y., Li, J.C., He, C., Zhang, Z.D., Song, T.T., Xu, C.J., Wang, G.J.: Long-distance multi-channel bidirectional chaos communication based on synchronized VCSELs subject to chaotic signal injection. Opt. Commun. 377, 1–9 (2016)

    Article  Google Scholar 

  15. Li, N.Q., Susantu, H., Cemlyn, B., Henning, I.D., Adams, M.J.: Secure communication systems based on chaos in optically pumped spin-VCSELs. Opt. Lett. 42, 3494–3497 (2017)

    Article  Google Scholar 

  16. Liu, B.C., Xie, Y.Y., Liu, Y.Z., Wang, Y., Du, Y.X., Zheng, W.J., Liu, Y.: A novel double masking scheme for enhancing security of optical chaotic communication based on two groups of mutually asynchronous VCSELs. Opt. Laser Technol. 107, 122–130 (2018)

    Article  Google Scholar 

  17. Nguimdo, R.M., Verschaffelt, G., Danckaert, J., Sande, G.V.: Fast photonic information processing using semiconductor lasers with delayed optical feedback: role of phase dynamics. Opt. Express 22, 8672–8686 (2014)

    Article  Google Scholar 

  18. Hou, Y.S., Xia, G.Q., Yang, W.Y., Wang, D., Jayaprasath, E., Jiang, Z.F., Hu, C.X., Wu, Z.M.: Prediction performance of reservoir computing system based on a semiconductor laser subject to double optical feedback and optical injection. Opt. Express 26, 10211–10219 (2018)

    Article  Google Scholar 

  19. Guo, X.X., Xiang, S.Y., Zhang, Y.H., Lin, L., Wen, A.J., Hao, Y.: Four-channels reservoir computing based on polarization dynamics in mutually coupled VCSELs system. Opt. Express 27, 23293–23305 (2019)

    Article  Google Scholar 

  20. Uchida, A., Amano, K., Inoue, M., Hirano, K., Naito, S., Someya, H., Oowada, I., Kurashige, T., Shili, M., Yoshimori, S., Yoshimura, K., Davis, P.: Fast physical random bit generation with chaotic semiconductor lasers. Nat. Photonics 2, 728–732 (2008)

    Article  Google Scholar 

  21. Hirano, K., Yamazaki, T., Morikatsu, S., Okumura, H., Aida, H., Uchida, A., Yoshimori, S., Yoshimura, K., Harayama, T., Davis, P.: Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers. Opt. Express 18, 5512–5524 (2010)

    Article  Google Scholar 

  22. Xie, Y.Y., Li, J.C., Kong, Z.F., Zhang, Y.S., Liao, X.F., Liu, Y.: Exploiting optics chaos for image encryption-then-transmission. J. Lightwave Technol. 34, 5101–5109 (2016)

    Article  Google Scholar 

  23. Li, L.L., Xie, Y.Y., Liu, B.C., Xiao, Y., Ye, Y.C., Song, T.T., Zhang, Y.S., Liu, Y.: Optical image encryption and transmission with semiconductor lasers. Opt. Laser Technol. 119, 105616 (2019)

    Article  Google Scholar 

  24. Holub, M., Shin, J., Saha, D., Bhattacharya, P.: Electrical spin injection and threshold reduction in a semiconductor laser. Phys. Rev. Lett. 98, 146603 (2007)

    Article  Google Scholar 

  25. Qader, A.A., Hong, Y., Shore, K.A.: Lasing characteristics of VCSELs subject to circularly polarized optical injection. J. Lightwave Technol. 29, 3804–3809 (2011)

    Article  Google Scholar 

  26. Li, N.Q., Susanto, H., Cemlyn, B.R., Henning, I.D., Adams, M.J.: Stability and bifurcation analysis of spin-polarized vertical-cavity surface-emitting lasers. Phys. Rev. A 96, 013840 (2017)

    Article  Google Scholar 

  27. Al-Seyab, R., Alexandropoulos, D., Henning, I.D., Adams, M.J.: Instabilities in spin-polarized vertical-cavity surface-emitting lasers. IEEE Photonics J. 3, 799–809 (2011)

    Article  Google Scholar 

  28. Lindemann, M., Pusch, T., Michalzik, R., Gerhardt, N.C., Hofmann, M.R.: Frequency tuning of polarization oscillations: toward high-speed spin-lasers. Appl. Phys. Lett. 108, 042404 (2016)

    Article  Google Scholar 

  29. Susanto, H., Schires, K., Adams, M.J., Henning, I.D.: Spin-flip model of spin-polarized vertical-cavity surface-emitting lasers: asymptotic analysis, numerics, and experiments. Phys. Rev. A 92, 063838 (2015)

    Article  Google Scholar 

  30. Cemlyn, B.R., Henning, I.D., Adams, M.J., Harbord, E., Oulton, R., Korpijärvi, V.M., Guina, M.: Polarization responses of a solitary and optically injected vertical cavity spin laser. IEEE J. Quantum Electron. 55, 2400409 (2019)

    Article  Google Scholar 

  31. Basu, D., Saha, D., Wu, C.C., Holub, M., Mi, Z., Bhattacharya, P.: Electrically injected InAs/GaAs quantum dot spin laser operating at 200K. Phys. Rev. Lett. 92, 091119 (2008)

    Google Scholar 

  32. Basu, D., Saha, D., Bhattacharya, P.: Optical polarization modulation and gain anisotropy in an electrically injected spin laser. Phys. Rev. Lett. 102, 093904 (2009)

    Article  Google Scholar 

  33. Oszwałdowski, R., Gøthgen, C., Žutić1, I.: Theory of quantum dot spin lasers. Phys. Rev. B 82, 085316 (2010)

  34. Alharthi, S.S., Orchard, J., Clarke, E., Henning, I.D., Adams, M.J.: 1300 nm optically pumped quantum dot spin vertical external-cavity surface-emitting laser. Phys. Rev. Lett. 107, 151109 (2015)

    Google Scholar 

  35. Bimberg, D., Kirstaedter, N., Ledentsov, N.N., Alferov, Z.I., Kop’ev, P.S., Ustinov, V.M.: InGaAs-GaAs quantum-dot lasers. IEEE J. Sel. Top. Quantum Electron. 3, 196–205 (1997)

  36. Alexandropoulos, D., Al-Seyab, R., Henning, I.D., Adams, M.J.: Instabilities in quantum-dot spin-VCSELs. Opt. Lett. 37, 1700–1702 (2012)

    Article  Google Scholar 

  37. Robb, J.L., Chen, Y., Timmons, A., Hall, K.C., Shchekin, O.B.: Time-resolved Faraday rotation measurements of spin relaxation in InGaAs/GaAs quantum dots: role of excess energy. Appl. Phys. Lett. 90, 153118 (2007)

    Article  Google Scholar 

  38. Li, N.Q., Alexandropoulos, D., Susanto, H., Henning, I.D., Adams, M.J.: Stability analysis of quantum-dot spin-VCSELs. Electronics 5, 1–8 (2016)

    Article  Google Scholar 

  39. Adams, M.J., Alexandropoulos, D.: Analysis of quantum-dot spin-VCSELs. IEEE Photonics J. 4, 1124–1132 (2012)

    Article  Google Scholar 

  40. Li, N.Q., Susanto, H., Cemlyn, B.R., Henning, I.D., Adams, M.J.: Mapping bifurcation structure and parameter dependence in quantum dot spin-VCSELs. Opt. Express 26, 14636–14649 (2018)

    Article  Google Scholar 

  41. Vicente, R., Mirasso, C.R.: Dynamics of mutually coupled VCSELs. Proc. SPIE 5349, 331–338 (2004)

    Article  Google Scholar 

  42. Zhong, Z.Q., Wu, Z.M., Wu, J.G., Xia, G.Q.: Time-delay signature suppression of polarization-resolved chaos outputs from two mutually coupled VCSELs. IEEE Photonics J. 5, 1500409 (2013)

    Article  Google Scholar 

  43. Li, X.F., Pan, W., Luo, B., Ma, D., Zhang, W.L.: Nonlinear dynamics and localized synchronization in mutually coupled VCSELs. Opt. Laser Technol. 39, 875–880 (2007)

    Article  Google Scholar 

  44. Sciamanna, M., Panajotov, K.: Route to polarization switching induced by optical injection in vertical-cavity surface-emitting lasers. Phys. Rev. A 73, 023811 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge Natural Science Foundation of Chongqing City (Grant No. cstc2016jcyjA0581); Postdoctoral Science Foundation of China (Grant No. 2016M590875); and Fundamental Research Funds for the Central Universities (Grant XDJK2018B012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiyuan Xie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Xie, Y., Liu, B. et al. Dynamics of mutually coupled quantum dot spin-VCSELs subject to key parameters. Nonlinear Dyn 105, 3659–3671 (2021). https://doi.org/10.1007/s11071-021-06760-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06760-1

Keywords

Navigation