Skip to main content
Log in

Bifurcations in a Hamiltonian system with two degrees of freedom associated with the reversible hyperbolic umbilic

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

A Correction to this article was published on 02 August 2021

This article has been updated

Abstract

We deal with Hamiltonian bifurcations associated with the reversible umbilic in two degrees of freedom systems defined by 0:1 resonance, i.e. the unperturbed equilibrium has two purely imaginary eigenvalues and a semisimple double-zero one. The Hamiltonian is written as the sum of integrable Hamiltonian \(N\big (\frac{1}{2}(x^{2}+y^{2}),q,p;\lambda \big )\) and a small perturbation \(P(x,y,q,p;\lambda )\) by the normalization procedure. The phase portrait of N on each level of the integral \(I_{1}=\frac{1}{2}(x^{2}+y^{2})\) is then studied in detail, obtaining an unfolding related to the reversible hyperbolic umbilic catastrophe. The persistence of 2-tori (i.e. two-dimensional tori) for the full system is analysed via KAM theory pointed out just as in Broer et al. (Z Angew Math Phys 44: 389–432, 1993), (in: Langford, Nagata (eds) Normal forms and homoclinic chaos, Waterloo, (1992), Fields Institute Communications 4 (1995)). In a sense, our results can be seen as a four-dimensional extension of a planar problem studied by Hanßmann (Phys D 112: 81–94, 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

References

  1. Arnold, V.I.: Small denominators and problems of stability of motion in classical mechanics. Usp. Math. Nauk. 18, 91–192 (1963)

    MathSciNet  Google Scholar 

  2. Arnold, V.I.: Normal forms of functions near degenerate critical points, the Weyl groups of \(A_{k}, D_{k}, E_{k}\) and Lagrangian singularities. Funct. Anal. Appl. 6, 254–272 (1972)

    Article  Google Scholar 

  3. Arnold, V.I.: Dynamical Systems III. Springer, Berlin (1988)

    Book  Google Scholar 

  4. Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, Berlin, New York (1989)

    Book  Google Scholar 

  5. Broer, H.W., Chow, S.-N., Kim, Y., Vegter, G.: A normally elliptic Hamiltonian bifurcation. Z. Angew. Math. Phys. 44, 389–432 (1993)

    Article  MathSciNet  Google Scholar 

  6. Broer, H.W., Chow, S.-N., Kim, Y., Vegter, G.: The Hamiltonian double-zero eigenvalue. In: Langford, W.E., Nagata, W. (eds.) Normal Forms and Homoclinic Chaos, Waterloo, (1992), Fields Institute Communications 4 (1995) pp 1–19

  7. Broer, H.W., Lunter, G.A., Vegter, G.: Equivariant singularity theory with distinguished parameters: two case studies of resonant Hamiltonian systems. Phys. D 112, 64–80 (1998)

    Article  MathSciNet  Google Scholar 

  8. Broer, H.W., Hoveijn, I., Lunter, G.A., Vegter, G.: Resonances in a spring-pendulum: algorithms for equivariant singularity theory. Nonlinearity 11, 1569–1605 (1998)

    Article  MathSciNet  Google Scholar 

  9. Broer, H.W., Hoveijn, I., Lunter, G., Vegter, G.: Bifurcations in Hamiltonian Systems. Lecture Notes in Mathematics, vol. 1806. Springer, New York (2003)

    Book  Google Scholar 

  10. Eldhuset, K.: A new fourth-order processing algorithm for spaceborne SAR. IEEE Trans. Aerospace Electron. Syst. 34, 824–835 (1998)

    Article  Google Scholar 

  11. Fine, H.B.: College Algebra. Dover Publications Inc, New York (1961)

    MATH  Google Scholar 

  12. Gelfreich, V., Lerman, L.: Separatrix splitting at a Hamiltonian \(0^2 i\omega \) bifurcation. Regul. Chaotic Dyn. 19, 635–655 (2014)

    Article  MathSciNet  Google Scholar 

  13. Goodman, R.H.: Bifurcations of relative periodic orbits in NLS/GP with a triple-well potential. Phys. D 359, 39–59 (2017)

    Article  MathSciNet  Google Scholar 

  14. Hanßmann, H.: The reversible umbilic bifurcation. Phys. D 112, 81–94 (1998)

    Article  MathSciNet  Google Scholar 

  15. Hanßmann, H.: Local and Semi-local Bifurcations in Hamiltonian Dynamical Systems. Springer, Berlin Heidelberg (2007)

    MATH  Google Scholar 

  16. Han, Yuecai, Li, Yong, Yi, Yingfei: Invariant tori in Hamiltonian systems with high order proper degeneracy. Ann. Henri Poincaré 10, 1419–1436 (2010)

    Article  MathSciNet  Google Scholar 

  17. Hoveijn, I.: Versal deformations and normal forms for reversible and Hamiltonian linear systems. J. Differ. Equ. 126, 408–442 (1996)

    Article  MathSciNet  Google Scholar 

  18. Jezequel, T., Bernard, P., Lombardi, E.: Homoclinic orbits with many loops near a \(0^2 i\omega \) resonant fixed point of Hamiltonian systems. Disc. Contin. Dyn. Syst. 36, 3153–3225 (2016)

    MATH  Google Scholar 

  19. Liao, Y., Zhang, S., Xu, G., Xing, M.: A novel imaging algorithm for circular scanning SAR based on the Cardano’s formula. IET International Radar Conference (2013)

  20. Robinson, R.C.: Generic properties of conservative systems I. Am. J. Math. 92, 562–603 (1970)

    Article  MathSciNet  Google Scholar 

  21. Robinson, R.C.: Generic properties of conservative systems II. Am. J. Math. 92, 897–906 (1970)

    Article  MathSciNet  Google Scholar 

  22. Rüssmann, H.: Invariant tori in non-degenerate nearly integrable Hamiltonian systems. Regul. Chaotic Dyn. 6, 119–204 (2001)

    Article  MathSciNet  Google Scholar 

  23. Sang Koon, W., Owhadi, H., Tao, M.: Control of a model of DNA division via parametric resonance. Chaos 23, 013117 (2013)

    Article  MathSciNet  Google Scholar 

  24. Sokolskii, A.G.: On stability of an autonomous Hamiltonian system with two degrees of freedom under first-order resonance. J. Appl. Math. Mech. 41, 4–33 (1977)

    MathSciNet  Google Scholar 

  25. Tang, Yilei, Zhang, Weinian: Versal unfolding of planar Hamiltonian systems at fully degenerate equilibrium. J. Differ. Equ. 261, 236–272 (2016)

    Article  MathSciNet  Google Scholar 

  26. Wassermann, G.: Stability of Unfoldings. Lecture Notes Mathematics 393. Springer, New York (1974)

  27. Wituła, R., Słota, D.: Cardanos formula, square roots, Chebyshev polynomials and radicals. J. Math. Anal. Appl. 363, 639–647 (2010)

    Article  MathSciNet  Google Scholar 

  28. Xu, Junxiang, You, Jiangong, Qiu, Qingjiu: Invariant tori for nearly integrable Hamiltonian systems with degeneracy. Math. Z. 226, 375–387 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the NNSF(11971163) of China, by Key Laboratory of High Performance Computing and Stochastic Information Processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: ” Various typesetting errors have been amended.

Appendices

A Appendix: Cardano’s formula for solving cubic equation

Here, we will use the Cardano’s formula to calculate the q-coordinate values of the intersection points of the q-axis and the energy curve \(\Gamma \). According to (2.7), when \(p=0\), the expression of the energy curve \(\Gamma \) is changed to

$$\begin{aligned} E(q):=q^{3}-3\lambda _{1}q^{2}+3(\lambda _{2}+\lambda _{3}I_{1})q-3h=0, \end{aligned}$$
(A.1)

where h denotes the energy value at the point (q, 0). The square member may be removed by the substitution \(q=t+\lambda _{1}\), and (A.1) can be rewritten as the canonical form of the cubic equation

$$\begin{aligned} t^{3}+mt+n=0, \end{aligned}$$
(A.2)

where

$$\begin{aligned}&m=-3\lambda _{1}^{2}+3(\lambda _{2}+\lambda _{3}I_{1}),\nonumber \\&n=3\lambda _{1} (\lambda _{2}+\lambda _{3}I_{1})-3h-2\lambda _{1}^{3}, \end{aligned}$$
(A.3)

the expression \(\Delta :=\frac{1}{4}n^{2}+\frac{1}{27}m^{3}\) is called the discriminant of the cubic equation (A.2).

Using Cardano’s formula[11, 27] for the cubic equation (A.1), we obtain the q-coordinate values of the intersection points of the q-axis and the energy curve \(\Gamma \) shown in Figs. 2 and 3 (note that in Figs. 2 and 3, we only marked some of the q-coordinate values involved in the proof of Theorems 3.5 and 3.11, while ignored other q-coordinate values). In fact, the q-coordinate value \(q_{ij}(h)\) depends on the energy value h. To simplify the notation, we abbreviate \(q_{ij}(h)\) as \(q_{ij}\) in this appendix.

Lemma 4.1

If \(m=n=0(\Leftrightarrow h=h_{\eta _{+}}=h_{\eta _{-}}=\frac{1}{3}\lambda _{1}^{3})\), then the cubic equation (A.1) has one triple root, namely \(q_{1,2,3}=\lambda _{1}\). This situation corresponds to the q-coordinate value of the only parabolic equilibrium point (i.e. subgraph F and subgraph H in Fig. 1) when \(\lambda _{2}+\lambda _{3}I_{1}=\lambda _{1}^{2}\). Otherwise, we have the following three situations:

  • (i) If \(\Delta <0(\Leftrightarrow h\in (h_{\eta _{+}},h_{\eta _{-}}))\), then (A.1) has three distinct real roots, namely \(q_{1i}<q_{2i}<q_{3i}\) (\(i=0\) if \(\lambda \in \Pi ^{A};\) \(i=1,2\) if \(\lambda \in \Pi ^{B}\)) (cf.[10, 19]):

    $$\begin{aligned}&\left\{ \begin{array}{ll} q_{1i}=\lambda _{1}+\frac{-1+\sqrt{-1}\sqrt{3}}{2}\root 3 \of {-\frac{n}{2}+\sqrt{\Delta }}+\frac{-1-\sqrt{-1}\sqrt{3}}{2}\root 3 \of {-\frac{n}{2}-\sqrt{\Delta }}=\lambda _{1}+2\sqrt{-\frac{m}{3}}\cos (\frac{\phi }{3}+\frac{2\pi }{3})\\ q_{2i}=\lambda _{1}+\frac{-1-\sqrt{-1}\sqrt{3}}{2}\root 3 \of {-\frac{n}{2}+\sqrt{\Delta }}+\frac{-1+\sqrt{-1}\sqrt{3}}{2}\root 3 \of {-\frac{n}{2}-\sqrt{\Delta }}=\lambda _{1}+2\sqrt{-\frac{m}{3}}\cos (\frac{\phi }{3}-\frac{2\pi }{3})\\ q_{3i}=\lambda _{1}+\root 3 \of {-\frac{n}{2}+\sqrt{\Delta }}+\root 3 \of {-\frac{n}{2}-\sqrt{\Delta }}=\lambda _{1}+2\sqrt{-\frac{m}{3}}\cos \frac{\phi }{3}, \end{array} \right. \end{aligned}$$
    (A.4)

    where

    $$\begin{aligned} \phi =\arccos \frac{-n\sqrt{-27m}}{2m^{2}} \end{aligned}$$
    (A.5)

    depends on the energy value h

  • (ii) If \(\Delta =0\) and \((m,n)\ne (0,0)(\Leftrightarrow h=h_{\eta _{-}}~\mathrm{or}~h_{\eta _{+}}~(h_{\eta _{+}}\ne h_{\eta _{-}}))\), then (A.1) has three real roots, whereby at least two of them are equal. If \(h=h_{\eta _{-}}\), (A.1) has three real roots \(q_{4,5}<q_{6}:\)

    $$\begin{aligned} \left\{ \begin{array}{ll} q_{4,5}=\lambda _{1}+\root 3 \of {\frac{n}{2}}=\lambda _{1}-\sqrt{\lambda _{1}^{2}-(\lambda _{2}+\lambda _{3}I_{1})}:=q_{\eta _{-}}\\ q_{6}=\lambda _{1}-2\root 3 \of {\frac{n}{2}}=\lambda _{1}+2\sqrt{\lambda _{1}^{2}-(\lambda _{2}+\lambda _{3}I_{1})}; \end{array} \right. \end{aligned}$$

    If \(h=h_{\eta _{+}}\), (A.1) has three real roots \(q_{9}<q_{7,8}\):

    $$\begin{aligned} \left\{ \begin{array}{ll} q_{7,8}=\lambda _{1}+\root 3 \of {\frac{n}{2}}=\lambda _{1}+\sqrt{\lambda _{1}^{2}-(\lambda _{2}+\lambda _{3}I_{1})}:=q_{\eta _{+}}\\ q_{9}=\lambda _{1}-2\root 3 \of {\frac{n}{2}}=\lambda _{1}-2\sqrt{\lambda _{1}^{2}-(\lambda _{2}+\lambda _{3}I_{1})}; \end{array} \right. \end{aligned}$$
  • (iii) If \(\Delta >0(\Leftrightarrow h\in (-\infty ,h_{\eta _{+}})\bigcup (h_{\eta _{-}},+\infty ))\), then (A.1) has only one simple real root:

    $$\begin{aligned} q=\lambda _{1}+\root 3 \of {-\frac{n}{2}+\sqrt{\Delta }}+\root 3 \of {-\frac{n}{2}-\sqrt{\Delta }}. \end{aligned}$$

Remark 4.2

We are easy to obtain the extreme points of E(q) are \(q_{\eta _{\pm }}=\lambda _{1}\pm \sqrt{\lambda _{1}^{2}-(\lambda _{2}+\lambda _{3}I_{1})}.\) It is easy to show that E(q) is strictly monotonously increasing when \(q<q_{\eta _{-}}\) and \(q>q_{\eta _{+}}\), strictly monotonously decreasing when \(q_{\eta _{-}}<q<q_{\eta _{+}}\), and that \(q_{\eta _{-}}\) and \(q_{\eta _{+}}\) are the maximum and minimum points of E(q), respectively. Therefore, we imply that for the energy value \(h_{\kappa }\) of the point \((q_{\kappa },0)\) on the q-axis,

$$\begin{aligned}&h_{\eta _{+}}<h_{10}=h_{20}=h_{30}<h_{\eta _{-}}=h_{6},~~~\mathrm{if} ~\lambda \in \Pi ^{A};\\&h_{\eta _{+}}<h_{1i}=h_{2i}=h_{3i}<h_{\eta _{-}},~~~i=1,2,~~~\mathrm{if} ~\lambda \in \Pi ^{B}. \end{aligned}$$

B Appendix: Some calculations involved in subsection 3.1

1.1 B.1 Formulas of \(\widetilde{q}_{i0}~(i=1,2,3)\) in (3.11)

For \(\lambda \in \Pi ^{A}\), we have

$$\begin{aligned} \lambda _{1}>0,~~~\frac{\lambda _{2}+\lambda _{3}I_{1}}{\lambda _{1}^{2}}=:\lambda _{A}\in (-3,1). \end{aligned}$$
(B.1)

According to Lemma 4.1 in Appendix A, the existence condition of the three q-coordinate values \(q_{i0}~(i=1,2,3)\) in Case A is \(h\in (h_{\eta _{+}},h_{\eta _{-}})\). From (2.5) and (B.1), it follows

$$\begin{aligned} \left\{ \begin{array}{ll} h_{\eta _{+}}=\lambda _{1}^{3}\big [-\frac{2}{3}(1-\lambda _{A})^{\frac{3}{2}}+\lambda _{A}-\frac{2}{3}\big ]:=\lambda _{1}^{3}\widetilde{h}_{\eta _{+}},\\ h_{\eta _{-}}=\lambda _{1}^{3}\big [\frac{2}{3}(1-\lambda _{A})^{\frac{3}{2}}+\lambda _{A}-\frac{2}{3}\big ]:=\lambda _{1}^{3}\widetilde{h}_{\eta _{-}}. \end{array} \right. \end{aligned}$$
(B.2)

Thus, we have

$$\begin{aligned} \lambda _{1}^{-3}h=:\widetilde{h}\in (\widetilde{h}_{\eta _{+}},\widetilde{h}_{\eta _{-}}). \end{aligned}$$
(B.3)

By (A.3) and (B.1), we can rewrite m and n as

$$\begin{aligned} m=-3\lambda _{1}^{2}(1-\lambda _{A}),~~n=\lambda _{1}^{3}(3\lambda _{A}-3\widetilde{h}-2). \end{aligned}$$
(B.4)

Noting (B.2), (B.3) and inserting (B.4) into (A.5) yields

$$\begin{aligned} \phi =\arccos \left( -n\sqrt{\frac{-27}{4m^{3}}}\right) :=\arccos F_{1}(\lambda _{A},\widetilde{h}), \end{aligned}$$
(B.5)

where

$$\begin{aligned}&F_{1}(\lambda _{A},\widetilde{h})=\frac{ \frac{3}{2}\widetilde{h} -\frac{3}{2}\lambda _{A}+1}{(1-\lambda _{A})^{\frac{3}{2}}} \\&\quad \in (F_{1}(\lambda _{A},\widetilde{h}_{\eta _{+}}),F_{1} (\lambda _{A},\widetilde{h}_{\eta _{-}}))=(-1,1). \end{aligned}$$

Therefore, \(\phi \in (0,\pi )\) and depends on \(\lambda _{A}\) and \(\widetilde{h}\).

From Remark 3.4 and Remark 3.6, in order to prove Theorem 3.5, we need to take

$$\begin{aligned} \left\{ \begin{array}{ll} h\in (h_{1},h_{2})\subset (h_{\eta _{+}},h_{\eta _{-}}),\\ \lambda _{A}\in (-2.9,0.9)\subset (-3,1), \end{array} \right. \end{aligned}$$
(B.6)

where

$$\begin{aligned} \left\{ \begin{array}{ll} h_{1}=\lambda _{1}^{3}\big [\frac{\sqrt{2}}{3}(1-\lambda _{A})^{\frac{3}{2}}+\lambda _{A}-\frac{2}{3}\big ]:=\lambda _{1}^{3}\widetilde{h}_{1},\\ h_{2}=\lambda _{1}^{3}\big [\frac{2}{3}(1-\lambda _{A})^{\frac{3}{2}}\cos \frac{\pi }{8}+\lambda _{A}-\frac{2}{3}\big ]:=\lambda _{1}^{3}\widetilde{h}_{2}. \end{array} \right. \end{aligned}$$
(B.7)

Thus,

$$\begin{aligned} \widetilde{h}\in (\widetilde{h}_{1},\widetilde{h}_{2})\subset (\widetilde{h}_{\eta _{+}},\widetilde{h}_{\eta _{-}}). \end{aligned}$$
(B.8)

Noting (B.5)-(B.8), we have \(F_{1}(\lambda _{A},\widetilde{h})\in (F_{1}(\lambda _{A},\widetilde{h}_{1}),F_{1}(\lambda _{A},\widetilde{h}_{2}))=(\frac{\sqrt{2}}{2},\cos \frac{\pi }{8})\subset (-1,1)\). Therefore, we get

$$\begin{aligned} \phi \in (\frac{\pi }{8},\frac{\pi }{4})\subset (0,\pi ) \end{aligned}$$
(B.9)

and depends on \(\lambda _{A}\) and \(\widetilde{h}\).

Inserting (B.4) into (A.4) yields

$$\begin{aligned} \left\{ \begin{array}{ll} \widetilde{q}_{10}=\frac{q_{10}}{\lambda _{1}}=1+2\sqrt{1-\lambda _{A}}\cos (\frac{\phi }{3}+\frac{2\pi }{3}),\\ \widetilde{q}_{20}=\frac{q_{20}}{\lambda _{1}}=1+2\sqrt{1-\lambda _{A}}\cos (\frac{\phi }{3}-\frac{2\pi }{3}),\\ \widetilde{q}_{30}=\frac{q_{30}}{\lambda _{1}}=1+2\sqrt{1-\lambda _{A}}\cos \frac{\phi }{3}, \end{array} \right. \end{aligned}$$
(B.10)

where the expression of \(\phi \) is shown in (B.5). By (B.6), (B.9) and (B.10), we have

$$\begin{aligned}&\frac{(\widetilde{q}_{20}+1)(\widetilde{q}_{20}-\widetilde{q}_{10})}{(\widetilde{q}_{30}+1)(\widetilde{q}_{30}-\widetilde{q}_{10})}\nonumber \\&\quad =\frac{\left( 1+\sqrt{1-\lambda _{A}}\cos (\frac{\phi }{3}-\frac{2\pi }{3})\right) \sin \frac{\phi }{3}}{\left( 1+\sqrt{1-\lambda _{A}}\cos \frac{\phi }{3}\right) \sin (\frac{\phi }{3}+\frac{\pi }{3})}\nonumber \\&\qquad \in (0.0112,0.1968), \end{aligned}$$
(B.11)

where we use these facts that \(\cos (\frac{\phi }{3}-\frac{2\pi }{3})\in (-0.3827,-0.2590)\), \(\cos \frac{\phi }{3}\in (0.9660,0.9914)\), \(\sin \frac{\phi }{3}\in (0.1305,0.2586)\) and \(\sin (\frac{\phi }{3}+\frac{\pi }{3})\in (0.9239,0.9659)\).

1.2 B.2 Formulas of ab and c in (3.17) and their estimates

Noting (B.6), (B.7) and (B.8), by (A.5), (B.4) and (B.10), we can get

$$\begin{aligned} \left\{ \begin{array}{ll} \frac{\partial \widetilde{q}_{10}}{\partial h}=\lambda _{1}^{-3}F_{2}(\lambda _{A},\widetilde{h})\sin \left( \frac{\phi }{3}+\frac{2\pi }{3}\right) ,\\ \frac{\partial \widetilde{q}_{20}}{\partial h}=\lambda _{1}^{-3}F_{2}(\lambda _{A},\widetilde{h}) \sin \left( \frac{\phi }{3}-\frac{2\pi }{3}\right) ,\\ \frac{\partial \widetilde{q}_{30}}{\partial h}=\lambda _{1}^{-3}F_{2}(\lambda _{A},\widetilde{h})\sin \frac{\phi }{3}, \end{array} \right. \end{aligned}$$
(B.12)

where

$$\begin{aligned}&F_{2}(\lambda _{A},\widetilde{h})=\Big [(1-\lambda _{A})^{2} -(1-\lambda _{A})^{-1}\nonumber \\&\quad \left( \frac{3}{2}\widetilde{h}-\frac{3}{2} \lambda _{A}+1\right) ^{2}\Big ]^{-\frac{1}{2}}\nonumber \\&\quad \in \left( \frac{\sqrt{2}}{1-\lambda _{A}},\frac{1}{(1-\lambda _{A}) \sqrt{1-(\cos \frac{\pi }{8})^2}}\right) \nonumber \\&\quad \subset (0.3626,26.1313)~~\mathrm{for~all}~\widetilde{h}\in \left( \widetilde{h}_{1},\widetilde{h}_{2}\right) ,\nonumber \\&\quad ~\lambda _{A}\in (-2.9,0.9). \end{aligned}$$
(B.13)

Noting (B.9), inserting (B.10), (B.12) into (3.17) and simplifying, we have

$$\begin{aligned} \left\{ \begin{array}{ll} a=\lambda _{1}^{-3}F_{2}(\lambda _{A},\widetilde{h})\sqrt{1-\lambda _{A}}f_{1}(\phi ),\\ b=\lambda _{1}^{-3}F_{2}(\lambda _{A},\widetilde{h})\big (f_{2}(\phi )+\sqrt{1-\lambda _{A}}f_{3}(\phi )\big ),\\ c=\lambda _{1}^{-3}F_{2}(\lambda _{A},\widetilde{h})\big (f_{4}(\phi )+\sqrt{1-\lambda _{A}}f_{5}(\phi )\big ), \end{array} \right. \end{aligned}$$
(B.14)

where \(f_{1}(\phi ):=-6\sin (\frac{2\phi }{3}-\frac{2\pi }{3})\), \(f_{2}(\phi ):=2\sqrt{3}\cos (\frac{\phi }{3}-\frac{\pi }{3})\), \(f_{3}(\phi ):=4\sqrt{3}\cos (\frac{2\phi }{3}-\pi )-2\sqrt{3}\cos (\frac{2\phi }{3}+\frac{\pi }{3})\), \(f_{4}(\phi ):=-2\sqrt{3}\cos \frac{\phi }{3}\) and \(f_{5}(\phi ):=-2\sqrt{3}\cos (\frac{2\phi }{3}-\frac{2\pi }{3})\).

From (B.9), we can get the facts: \(f_{1}(\phi )\in (5.7956,6)\), \(f_{4}(\phi )\in (-3.4345,-3.3463)\), \(f_{5}(\phi )\in (0.0016,0.8966)\), \(f_{2}(\phi )+f_{4}(\phi )\in (-1.3257,-0.8974)\) and \(f_{1}(\phi )+f_{3}(\phi )+f_{5}(\phi )\in (-0.8966,-0.0016)\). Finally, applying (B.6) and (B.13) to (B.14), we have

$$\begin{aligned} \left\{ \begin{array}{ll} a=\lambda _{1}^{-3}C_{a}>0,\\ c=\lambda _{1}^{-3}C_{c}<0,\\ a+b+c=\lambda _{1}^{-3}C_{a+b+c}<0, \end{array} \right. \end{aligned}$$
(B.15)

where

$$\begin{aligned}&C_{a}:=F_{2}(\lambda _{A},\widetilde{h})\sqrt{1-\lambda _{A}}f_{1}(\phi )\in (0.6645,309.6245),\\&C_{c}:=F_{2}(\lambda _{A},\widetilde{h})\big (f_{4}(\phi )\\&\quad +\sqrt{1-\lambda _{A}}f_{5}(\phi )\big )\in (-89.7349,-0.5713),\\&C_{a+b+c}:=F_{2}(\lambda _{A},\widetilde{h})\big [f_{2}(\phi )+f_{4}(\phi )\\&\quad +\sqrt{1-\lambda _{A}}\left( f_{1}(\phi )+f_{3}(\phi )+f_{5}(\phi )\right) \big ]\\&\quad \in (-80.9103,-0.3256). \end{aligned}$$

C. Appendix: Some calculations involved in subsection 3.2

1.1 C.1 Formulas of \(\widehat{q}_{i1}~(i=1,2,3)\) in (3.34)

For \(\lambda \in \Pi ^{B}\), we have

$$\begin{aligned} \mu :=-(\lambda _{2}+\lambda _{3}I_{1})>0,~~\lambda _{B}:=\frac{\lambda _{1}^{2}}{\lambda _{2}+\lambda _{3}I_{1}}\in (-\frac{1}{3},0]. \end{aligned}$$
(C.1)

According to Lemma 4.1 in Appendix A, the condition on the existence of the three q-coordinate values \(q_{i1}~(i=1,2,3)\) in Case B is \(h\in (h_{\mathrm{het}},h_{\eta _{-}})\subset (h_{\eta _{+}},h_{\eta _{-}})\). By (2.5) and (2.6), it follows

$$\begin{aligned} h_{\mathrm{het}}= \left\{ \begin{array}{ll} \mu ^{\frac{3}{2}}\big [-\frac{4}{3}(-\lambda _{B})^{\frac{3}{2}}+(-\lambda _{B})^{\frac{1}{2}}\big ]:=\mu ^{\frac{3}{2}}\widehat{h}_{\mathrm{het}}^{1}~~\mathrm{for}~\lambda _{1}\geqslant 0,\\ \mu ^{\frac{3}{2}}\big [\frac{4}{3}(-\lambda _{B})^{\frac{3}{2}}-(-\lambda _{B})^{\frac{1}{2}}\big ]:=\mu ^{\frac{3}{2}}\widehat{h}_{\mathrm{het}}^{2}~~\mathrm{for}~\lambda _{1}<0, \end{array} \right. \nonumber \\ \end{aligned}$$
(C.2)
$$\begin{aligned} h_{\eta _{-}}= \left\{ \begin{array}{ll} \mu ^{\frac{3}{2}}\big [\frac{2}{3}(1-\lambda _{B})^{\frac{3}{2}}-\frac{2}{3}(-\lambda _{B})^{\frac{3}{2}}-(-\lambda _{B})^{\frac{1}{2}}\big ]:=\mu ^{\frac{3}{2}}\widehat{h}_{\eta _{-}}^{1}~~\mathrm{for}~\lambda _{1}\geqslant 0,\\ \mu ^{\frac{3}{2}}\big [\frac{2}{3}(1-\lambda _{B})^{\frac{3}{2}}+\frac{2}{3}(-\lambda _{B})^{\frac{3}{2}}+(-\lambda _{B})^{\frac{1}{2}}\big ]:=\mu ^{\frac{3}{2}}\widehat{h}_{\eta _{-}}^{2}~~\mathrm{for}~\lambda _{1}<0. \end{array} \right. \nonumber \\ \end{aligned}$$
(C.3)

Then we have

$$\begin{aligned} \mu ^{-\frac{3}{2}}h=:\widehat{h}\in (\widehat{h}_{\mathrm{het}}^{i},\widehat{h}_{\eta _{-}}^{i})~~(i=1~\mathrm{if}~\lambda _{1}\geqslant 0;~i=2~\mathrm{if}~\lambda _{1}<0). \end{aligned}$$
(C.4)

By (A.3) and (C.1), we rewrite m and n as

$$\begin{aligned}&m=\mu (3\lambda _{B}-3),\nonumber \\&n= \left\{ \begin{array}{ll} \mu ^{\frac{3}{2}}\big [-3(-\lambda _{B})^{\frac{1}{2}}-3\widehat{h}-2(-\lambda _{B})^{\frac{3}{2}}\big ]~~\mathrm{for}~\lambda _{1}\geqslant 0,\\ \mu ^{\frac{3}{2}}\big [3(-\lambda _{B})^{\frac{1}{2}}-3\widehat{h}+2(-\lambda _{B})^{\frac{3}{2}}\big ]~~\mathrm{for}~\lambda _{1}<0. \end{array} \right. \nonumber \\ \end{aligned}$$
(C.5)

By (C.1)-(C.4), inserting (C.5) into (A.5) yields

$$\begin{aligned} \phi =\left\{ \begin{array}{ll} \arccos \left( \frac{\frac{3}{2}\widehat{h}+\frac{3}{2}(-\lambda _{B})^{\frac{1}{2}}+(-\lambda _{B})^{\frac{3}{2}}}{(1-\lambda _{B})^{\frac{3}{2}}}\right) :=\arccos G_{1}^{1}(\lambda _{B},\widehat{h})~~\mathrm{for}~\lambda _{1}\geqslant 0,\\ \arccos \left( \frac{\frac{3}{2}\widehat{h}-\frac{3}{2}(-\lambda _{B})^{\frac{1}{2}}-(-\lambda _{B})^{\frac{3}{2}}}{(1-\lambda _{B})^{\frac{3}{2}}}\right) :=\arccos G_{1}^{2}(\lambda _{B},\widehat{h})~~\mathrm{for}~\lambda _{1}<0, \end{array} \right. \end{aligned}$$
(C.6)

where

$$\begin{aligned} \left\{ \begin{array}{ll} G_{1}^{1}(\lambda _{B},\widehat{h}_{\mathrm{het}}^{1})=\frac{3(-\lambda _{B})^{\frac{1}{2}}-(-\lambda _{B})^{\frac{3}{2}}}{(1-\lambda _{B})^{\frac{3}{2}}}\in (0,1),~~G_{1}^{1}(\lambda _{B},\widehat{h}_{\eta _{-}}^{1})\equiv 1~~\mathrm{for~all}~\lambda _{B}\in (-\frac{1}{3},0],~\lambda _{1}\geqslant 0,\\ G_{1}^{2}(\lambda _{B},\widehat{h}_{\mathrm{het}}^{2})=\frac{-3(-\lambda _{B})^{\frac{1}{2}}+(-\lambda _{B})^{\frac{3}{2}}}{(1-\lambda _{B})^{\frac{3}{2}}}\in (-1,0),~~G_{1}^{2}(\lambda _{B},\widehat{h}_{\eta _{-}}^{2})\equiv 1~~\mathrm{for~all}~\lambda _{B}\in (-\frac{1}{3},0],~\lambda _{1}<0. \end{array} \right. \end{aligned}$$

Thus, \(G_{1}^{1}(\lambda _{B},\widehat{h})\in (G_{1}^{1}(\lambda _{B},\widehat{h}_{\mathrm{het}}^{1}),G_{1}^{1}(\lambda _{B},\widehat{h}_{\eta _{-}}^{1}))\subset (0,1),\) \(G_{1}^{2}(\lambda _{B},\widehat{h})\in (G_{1}^{2}(\lambda _{B},\widehat{h}_{\mathrm{het}}^{2}),G_{1}^{2}(\lambda _{B},\widehat{h}_{\eta _{-}}^{2}))\subset (-1,1).\) Therefore, if \(\lambda _{1}\geqslant 0\), then \(\phi \in (0,\frac{\pi }{2})\) and if \(\lambda _{1}<0\), then \(\phi \in (0,\pi )\).

From Remark 3.10 and Remark 3.12, in order to prove Theorem 3.11, we need to take

$$\begin{aligned} \left\{ \begin{array}{ll} h\in (h_{3}^{i},h_{4}^{i})\subset (h_{\mathrm{het}},h_{\eta _{-}}),\\ \lambda _{B}\in (-\frac{7}{30},0]\subset (-\frac{1}{3},0], \end{array} \right. \end{aligned}$$
(C.7)

where

$$\begin{aligned} \left\{ \begin{array}{ll} h_{3}^{i}=\mu ^{\frac{3}{2}}\widehat{h}_{3}^{i}~~(i=1~\mathrm{if}~\lambda _{1}\geqslant 0;~i=2~\mathrm{if}~\lambda _{1}<0),\\ h_{4}^{1}=\mu ^{\frac{3}{2}}\big [\frac{2}{3}(1-\lambda _{B})^{\frac{3}{2}}\cos \frac{\pi }{100}-\frac{2}{3}(-\lambda _{B})^{\frac{3}{2}}-(-\lambda _{B})^{\frac{1}{2}}\big ]:=\mu ^{\frac{3}{2}}\widehat{h}_{4}^{1}~~\mathrm{for}~\lambda _{1}\geqslant 0,\\ h_{4}^{2}=\mu ^{\frac{3}{2}}\big [\frac{2}{3}(1-\lambda _{B})^{\frac{3}{2}}\cos \frac{\pi }{100}+\frac{2}{3}(-\lambda _{B})^{\frac{3}{2}}+(-\lambda _{B})^{\frac{1}{2}}\big ]:=\mu ^{\frac{3}{2}}\widehat{h}_{4}^{2}~~\mathrm{for}~\lambda _{1}<0, \end{array} \right. \end{aligned}$$
(C.8)

\(\widehat{h}_{3}^{i}(\in (\widehat{h}_{\mathrm{het}}^{i},\widehat{h}_{4}^{i}),~i=1,2)\) are two functions depending on \(\lambda _{B}\) and satisfy the condition:

$$\begin{aligned} G_{1}^{i}(\lambda _{B},\widehat{h}_{3}^{i})\in (\cos \frac{\pi }{55},\cos \frac{\pi }{100})~~\mathrm{for~all}~\lambda _{B}\in (-\frac{7}{30},0]. \end{aligned}$$
(C.9)

Thus,

$$\begin{aligned}&\widehat{h}\in (\widehat{h}_{3}^{i},\widehat{h}_{4}^{i})\subset (\widehat{h}_{\mathrm{het}}^{i},\widehat{h}_{\eta _{-}}^{i})\nonumber \\&\quad (i=1~\mathrm{if}~\lambda _{1}\geqslant 0;~i=2~\mathrm{if}~\lambda _{1}<0). \end{aligned}$$
(C.10)

By (C.6)-(C.10) and \(G_{1}^{i}(\lambda _{B},\widehat{h}_{4}^{i})\equiv \cos \frac{\pi }{100}~(i=1,2)\), we have

$$\begin{aligned} \left\{ \begin{array}{ll} G_{1}^{1}(\lambda _{B},\widehat{h})\in (G_{1}^{1}(\lambda _{B},\widehat{h}_{3}^{1}),G_{1}^{1}(\lambda _{B},\widehat{h}_{4}^{1}))\subset (\cos \frac{\pi }{55},\cos \frac{\pi }{100})\subset (0,1)~~\mathrm{for}~\lambda _{1}\geqslant 0,\\ G_{1}^{2}(\lambda _{B},\widehat{h})\in (G_{1}^{2}(\lambda _{B},\widehat{h}_{3}^{2}),G_{1}^{2}(\lambda _{B},\widehat{h}_{4}^{2}))\subset (\cos \frac{\pi }{55},\cos \frac{\pi }{100})\subset (-1,1)~~\mathrm{for}~\lambda _{1}<0. \end{array} \right. \end{aligned}$$

Therefore, for all \(\lambda _{1}\in \mathbb {R}^{1}\) and \(\lambda _{B}\in (-\frac{7}{30},0]\), we have

$$\begin{aligned} \phi \in (\frac{\pi }{100},\frac{\pi }{55})\subset (0,\frac{\pi }{2}) \end{aligned}$$
(C.11)

and depends on \(\lambda _{B}\) and \(\widetilde{h}\).

Substituting (C.5) into (A.4) gives that if \(\lambda _{1}\geqslant 0\), then

$$\begin{aligned} \left\{ \begin{array}{ll} \widehat{q}_{11}=\mu ^{-\frac{1}{2}}q_{11}=(-\lambda _{B})^{\frac{1}{2}}+2\sqrt{1-\lambda _{B}}\cos (\frac{\phi }{3}+\frac{2\pi }{3}),\\ \widehat{q}_{21}=\mu ^{-\frac{1}{2}}q_{21}=(-\lambda _{B})^{\frac{1}{2}}+2\sqrt{1-\lambda _{B}}\cos (\frac{\phi }{3}-\frac{2\pi }{3}),\\ \widehat{q}_{31}=\mu ^{-\frac{1}{2}}q_{31}=(-\lambda _{B})^{\frac{1}{2}}+2\sqrt{1-\lambda _{B}}\cos \frac{\phi }{3}, \end{array} \right. \end{aligned}$$
(C.12)

and if \(\lambda _{1}<0\), then

$$\begin{aligned} \left\{ \begin{array}{ll} \widehat{q}_{11}=\mu ^{-\frac{1}{2}}q_{11}=-(-\lambda _{B})^{\frac{1}{2}}+2\sqrt{1-\lambda _{B}}\cos (\frac{\phi }{3}+\frac{2\pi }{3}),\\ \widehat{q}_{21}=\mu ^{-\frac{1}{2}}q_{21}=-(-\lambda _{B})^{\frac{1}{2}}+2\sqrt{1-\lambda _{B}}\cos (\frac{\phi }{3}-\frac{2\pi }{3}),\\ \widehat{q}_{31}=\mu ^{-\frac{1}{2}}q_{31}=-(-\lambda _{B})^{\frac{1}{2}}+2\sqrt{1-\lambda _{B}}\cos \frac{\phi }{3}, \end{array} \right. \end{aligned}$$
(C.13)

where the expression of \(\phi \) is given in (C.6). Due to (C.7), (C.11)-(C.13) and facts \(\cos (\frac{\phi }{3}-\frac{2\pi }{3})\in (-0.4909,-0.4834)\), \(\cos (\frac{\phi }{3}+\frac{2\pi }{3})\in (-0.5164,-0.5090)\), \(\sin (\frac{\phi }{3}-\frac{\pi }{3})\in (-0.8607,-0.8563)\) and \(\sin (\frac{\phi }{3}+\frac{\pi }{3})\in (0.8712,0.8754)\), it is easy to obtain that

$$\begin{aligned} \left\{ \begin{array}{ll} \frac{(\widehat{q}_{21}+(-\lambda _{B})^{\frac{1}{2}})(\widehat{q}_{21}-\widehat{q}_{31})}{(\widehat{q}_{11}+(-\lambda _{B})^{\frac{1}{2}})(\widehat{q}_{11}-\widehat{q}_{31})}=\frac{\left[ (-\lambda _{B})^{\frac{1}{2}}+\sqrt{1-\lambda _{B}}\cos (\frac{\phi }{3}-\frac{2\pi }{3})\right] \sin (\frac{\phi }{3}-\frac{\pi }{3})}{-\big [(-\lambda _{B})^{\frac{1}{2}}+\sqrt{1-\lambda _{B}}\cos (\frac{\phi }{3}+\frac{2\pi }{3})\big ]\sin (\frac{\phi }{3}+\frac{\pi }{3})}\in (6.8217\times 10^{-4},20.6696)~~\mathrm{for}~\lambda _{1}\geqslant 0,\\ \frac{(\widehat{q}_{21}-(-\lambda _{B})^{\frac{1}{2}})(\widehat{q}_{21}-\widehat{q}_{31})}{(\widehat{q}_{11}-(-\lambda _{B})^{\frac{1}{2}})(\widehat{q}_{11}-\widehat{q}_{31})}=\frac{\left[ -(-\lambda _{B})^{\frac{1}{2}}+\sqrt{1-\lambda _{B}}\cos (\frac{\phi }{3}-\frac{2\pi }{3})\right] \sin (\frac{\phi }{3}-\frac{\pi }{3})}{-\big [-(-\lambda _{B})^{\frac{1}{2}}+\sqrt{1-\lambda _{B}}\cos (\frac{\phi }{3}+\frac{2\pi }{3})\big ]\sin (\frac{\phi }{3}+\frac{\pi }{3})}\in (0.4475,1.9959)~~\mathrm{for}~\lambda _{1}<0. \end{array} \right. \end{aligned}$$
(C.14)

1.2 C.2 Formulas of \(a_{i},b_{i}\) and \(c_{i}~(i=1,2)\) in (3.40)–(3.42) and their estimates

By (A.3), (A.5), (C.5), differentiating (C.12) (and (C.13)) with respect to h and simplifying the equalities, we obtain

$$\begin{aligned} \left\{ \begin{array}{ll} \frac{\partial \widehat{q}_{11}}{\partial h}=\mu ^{-\frac{3}{2}}G_{2}^{i}(\lambda _{B},\widehat{h})\sin (\frac{\phi }{3}+\frac{2\pi }{3}),\\ \frac{\partial \widehat{q}_{21}}{\partial h}=\mu ^{-\frac{3}{2}}G_{2}^{i}(\lambda _{B},\widehat{h})\sin (\frac{\phi }{3}-\frac{2\pi }{3}),\\ \quad (i=1~\mathrm{if}~\lambda _{1}\geqslant 0;~i=2~\mathrm{if}~\lambda _{1}<0))\\ \frac{\partial \widehat{q}_{31}}{\partial h}=\mu ^{-\frac{3}{2}}G_{2}^{i}(\lambda _{B},\widehat{h})\sin \frac{\phi }{3}, \end{array} \right. \end{aligned}$$
(C.15)

where

$$\begin{aligned}&\left\{ \begin{array}{ll} G_{2}^{1}(\lambda _{B},\widehat{h})=\Big [(1-\lambda _{B})^{2}-(1-\lambda _{B})^{-1}\left( \frac{3}{2}\widehat{h}+\frac{3}{2}(-\lambda _{B})^{\frac{1}{2}}+(-\lambda _{B})^{\frac{3}{2}}\right) ^{2}\Big ]^{-\frac{1}{2}}~~\mathrm{for}~\lambda _{1}\geqslant 0,\\ G_{2}^{2}(\lambda _{B},\widehat{h})=\Big [(1-\lambda _{B})^{2}-(1-\lambda _{B})^{-1}\left( \frac{3}{2}\widehat{h}-\frac{3}{2}(-\lambda _{B})^{\frac{1}{2}}-(-\lambda _{B})^{\frac{3}{2}}\right) ^{2}\Big ]^{-\frac{1}{2}}~~\mathrm{for}~\lambda _{1}<0. \end{array} \right. \end{aligned}$$

Combining (C.2), (C.7) and (C.8), we have

$$\begin{aligned}&\left\{ \begin{array}{ll} G_{2}^{i}(\lambda _{B},\widehat{h}_{\mathrm{het}}^{i})=\Big [(1-\lambda _{B})^{2}-(1-\lambda _{B})^{-1}\left( 3(-\lambda _{B})^{\frac{1}{2}}-(-\lambda _{B})^{\frac{3}{2}}\right) ^{2}\Big ]^{-\frac{1}{2}}\in ( 1, 3.7019),\\ G_{2}^{i}(\lambda _{B},\widehat{h}_{4}^{i})=\frac{1}{(1-\lambda _{B})\sqrt{1-(\cos \frac{\pi }{100})^2}}\in (25.8132,31.8362) \end{array} \right. \\&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(i=1~\mathrm{if}~\lambda _{1}\geqslant 0;~i=2~\mathrm{if}~\lambda _{1}<0). \end{aligned}$$

Thus,

$$\begin{aligned}&G_{2}^{i}(\lambda _{B},\widehat{h})\in (G_{2}^{i}(\lambda _{B},\widehat{h}_{3}^{i}),\nonumber \\&\quad G_{2}^{i}(\lambda _{B},\widehat{h}_{4}^{i}))\subset (G_{2}^{i}(\lambda _{B},\widehat{h}_{\mathrm{het}}^{i}),G_{2}^{i}(\lambda _{B},\widehat{h}_{4}^{i}))\subset (1,31.8362) \nonumber \\&~~~~~~\mathrm{for~all}~\widehat{h}\in (\widehat{h}_{3}^{i},\widehat{h}_{4}^{i})~{\mathrm{and}}~\lambda _{B}\in (-\frac{7}{30},0]\nonumber \\&\quad (i=1~\mathrm{if}~\lambda _{1}\geqslant 0;~i=2~\mathrm{if}~\lambda _{1}<0). \end{aligned}$$
(C.16)

Noting (C.11), inserting (C.12) (or (C.13)), (C.15) into (3.40)-(3.42), we have

$$\begin{aligned} \left\{ \begin{array}{ll} a_{i}=\mu ^{-\frac{3}{2}}G_{2}^{i}(\lambda _{B},\widehat{h})\sqrt{1-\lambda _{B}}g_{1}^{i}(\phi ),\\ b_{i}=\mu ^{-\frac{3}{2}}G_{2}^{i}(\lambda _{B},\widehat{h})\left( (-\lambda _{B})^{\frac{1}{2}}g_{2}^{i}(\phi )+\sqrt{1-\lambda _{B}}g_{3}^{i}(\phi )\right) ,\\ \quad (i=1~\mathrm{if}~\lambda _{1}\geqslant 0;~i=2~\mathrm{if}~\lambda _{1}<0)\\ c_{i}=\mu ^{-\frac{3}{2}}G_{2}^{i}(\lambda _{B},\widehat{h})\left( (-\lambda _{B})^{\frac{1}{2}}g_{4}^{i}(\phi )+\sqrt{1-\lambda _{B}}g_{5}^{i}(\phi )\right) ,\\ \end{array} \right. \end{aligned}$$
(C.17)

where \(g_{1}^{1}(\phi )=g_{1}^{2}(\phi ):=-6\sin \frac{2\phi }{3}\in ( -0.2284,-0.1257)\), \(g_{2}^{1}(\phi ):=-2\sqrt{3}\cos \frac{\phi }{3}\in ( -3.4639, -3.4635)\), \(g_{2}^{2}(\phi )=-g_{2}^{1}(\phi )\in ( 3.4635, 3.4639)\), \(g_{3}^{1}(\phi )=g_{3}^{2}(\phi ):=-4\sqrt{3}\cos (\frac{2\phi }{3}-\frac{2\pi }{3})-2\sqrt{3}\cos \frac{2\phi }{3}\in (-0.2284, -0.1257)\), \(g_{4}^{1}(\phi ):=-2\sqrt{3}\cos (\frac{\phi }{3}-\frac{\pi }{3})\in ( -1.7888, -1.7634)\), \(g_{4}^{2}(\phi )=-g_{4}^{1}(\phi )\in (1.7634, 1.7888)\) and \(g_{5}^{1}(\phi )=g_{5}^{2}(\phi ):=-2\sqrt{3}\cos (\frac{2\phi }{3}-\pi )\in (3.4616,3.4633)\).

Applying (C.7) and (C.16) to (C.17), we have

$$\begin{aligned} \left\{ \begin{array}{ll} a_{i}=\mu ^{-\frac{3}{2}}C_{a_{i}}<0,\\ c_{i}=\mu ^{-\frac{3}{2}}C_{c_{i}}>0, &{}\quad (i=1~\mathrm{if}~\lambda _{1}\geqslant 0;~i=2~\mathrm{if}~\lambda _{1}<0),\\ a_{i}-b_{i}+c_{i}=\mu ^{-\frac{3}{2}}C_{a_{i}-b_{i}+c_{i}}>0, \end{array} \right. \end{aligned}$$
(C.18)

where

$$\begin{aligned}&C_{a_{1}}:=G_{2}^{1}(\lambda _{B},\widehat{h})\sqrt{1-\lambda _{B}}g_{1}^{1}(\phi )\in (-8.0756,-0.1257),\\&C_{a_{2}}:=G_{2}^{2}(\lambda _{B},\widehat{h})\sqrt{1-\lambda _{B}}g_{1}^{2}(\phi )\in (-8.0756,-0.1257),\\&C_{c_{1}}:=G_{2}^{1}(\lambda _{B},\widehat{h})\big ((-\lambda _{B})^{\frac{1}{2}}g_{4}^{1}(\phi )\\&\quad +\sqrt{1-\lambda _{B}}g_{5}^{1}(\phi )\big )\in (1.9536,122.4529),\\&C_{c_{2}}:=G_{2}^{2}(\lambda _{B},\widehat{h})\big ((-\lambda _{B})^{\frac{1}{2}}g_{4}^{2}(\phi )\\&\quad +\sqrt{1-\lambda _{B}}g_{5}^{2}(\phi )\big )\in (3.4616,170.4605),\\&C_{a_{1}-b_{1}+c_{1}}:=G_{2}^{1}(\lambda _{B},\widehat{h})\big [(-\lambda _{B})^{\frac{1}{2}}(-g_{2}^{1}(\phi )+g_{4}^{1}(\phi ))\\&\quad +\sqrt{1-\lambda _{B}}\left( g_{1}^{1}(\phi )-g_{3}^{1}(\phi )+g_{5}^{1}(\phi )\right) \big ]\\&\in (3.4616,168.0908),\\&C_{a_{2}-b_{2}+c_{2}}:=G_{2}^{2}(\lambda _{B},\widehat{h})\big [(-\lambda _{B})^{\frac{1}{2}}(-g_{2}^{2}(\phi )+g_{4}^{2}(\phi ))\\&\quad +\sqrt{1-\lambda _{B}}\left( g_{1}^{2}(\phi )-g_{3}^{2}(\phi )+g_{5}^{2}(\phi )\right) \big ]\\&\in (2.0281,122.4529). \end{aligned}$$

D Appendix: A KAM theorem for nearly integrable Hamiltonian systems

Consider the following Hamiltonian systems

$$\begin{aligned} \frac{{\mathrm {d}}q}{{\mathrm {d}}t}=\frac{\partial H}{\partial p},~~\frac{{\mathrm {d}}p}{{\mathrm {d}}t}=-\frac{\partial H}{\partial q}, \end{aligned}$$
(D.1)

with Hamiltonian \(H(q,p)=h(p)+\varepsilon f(q,p)\), \((q,p)\in \mathbb {T}^{n} \times D \), \(n\geqslant 2\), where \(p=(p_{1},p_{2},\ldots ,p_{n})\) are action variables in some bounded connected domain \(D\subset \mathbb {R}^{n}\), and \(q=(q_{1},q_{2},\ldots ,q_{n})\in \mathbb {T}^{n}:=\mathbb {R}^{n}/(2\pi \mathbb {Z})^{n}\) are conjugate angular variables.

Lemma 4.3

[28, Theorem A] Suppose that \(H(q,p)=h(p)+\varepsilon f(q,p)\) is analytic in \(\mathbb {T}^{n}\times \overline{D}\), where \(\overline{D}\) is the closure of D. If for each \(p\in D\)

$$\begin{aligned} {\mathrm{rank}}\left\{ \omega ,\frac{\partial ^{\mid k\mid }\omega }{\partial p^{k}}\big |\forall k\in \mathbb {Z}_{+}^{n},|k|\leqslant n-1\right\} =n, \end{aligned}$$
(D.2)

where \(\omega (p)=\frac{\partial h(p)}{\partial p}\) and \(\frac{\partial ^{\mid k\mid }\omega }{\partial p^{k}}=(\frac{\partial ^{\mid k\mid }\omega _{1}}{\partial p^{k}},\frac{\partial ^{\mid k\mid }\omega _{2}}{\partial p^{k}},\ldots ,\frac{\partial ^{\mid k\mid }\omega _{n}}{\partial p^{k}})\), then for \(\forall \gamma >0\) sufficiently small, there exists \(\varepsilon _{0}=\varepsilon _{0}(\gamma )>0\) such that if \(|\varepsilon |<\varepsilon _{0}\), there exists a nonempty Cantorian-like subset \(D_{\gamma }\subset D\) such that (D.1) admits a family of invariant n-tori \(\{{\mathcal {T}}_{p}^{n} : p\in D_{\gamma }\}\), whose frequencies \(\omega _{*}(p)\) satisfy \(|\omega _{*}(p)-\omega (p)|\leqslant c\varepsilon \) with c being a constant independent of \(\varepsilon \). Moreover, \(\mathrm{Meas}(D\backslash D_{\gamma })=O(\gamma )\), where \(O(\gamma )\rightarrow 0\) as \(\gamma \rightarrow 0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Li, X. Bifurcations in a Hamiltonian system with two degrees of freedom associated with the reversible hyperbolic umbilic. Nonlinear Dyn 105, 2005–2029 (2021). https://doi.org/10.1007/s11071-021-06629-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06629-3

Keywords

Navigation