Skip to main content
Log in

Multi-rogue wave solutions for a generalized integrable discrete nonlinear Schrödinger equation with higher-order excitations

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we construct the discrete higher-order rogue wave (RW) solutions for a generalized integrable discrete nonlinear Schrödinger (NLS) equation. First, based on the modified Lax pair, the discrete version of generalized Darboux transformation is constructed. Second, the dynamical behaviors of first-, second- and third-order RW solutions are investigated in corresponding to the unique spectral parameter, higher-order term coefficient, and free constants. The differences between the RW solution of the higher-order discrete NLS equation and that of the Ablowitz–Ladik (AL) equation are illustrated in figures. Moreover, we explore the numerical experiments, which demonstrates that strong-interaction RWs are stabler than the weak-interaction RWs. Finally, the modulation instability of continuous waves is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analysed during this study are including in this published article.

References

  1. Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 450, 06402 (2007)

    Article  Google Scholar 

  2. Chabchoub, A., Hoffmann, N.P., Akhmediev, N.: Rogue wave observation in a water wave tank. Phys. Rev. Lett. 106, 204502 (2011)

    Article  Google Scholar 

  3. Yan, Z.Y.: Vector financial rogue waves. Phys. Lett. A 375, 4274–4279 (2011)

    Article  Google Scholar 

  4. Akhmediev, N., Ankiewicz, A., Taki, M.: Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373, 675–678 (2009)

    Article  Google Scholar 

  5. Guo, B.L., Ling, L.M., Liu, Q.P.: Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions. Phys. Rev. E 85, 026607 (2012)

    Article  Google Scholar 

  6. Tao, Y.S., He, J.S.: Multisolitons, breathers, and rogue waves for the Hirota equation generated by the Darboux transformation. Phys. Rev. E 85, 026601 (2012)

    Article  Google Scholar 

  7. Qiu, D.Q., He, J.S., Zhang, Y.S., Porsezian, K.: The Darboux transformation of the Kundu–Eckhaus equation. Proc. R. Soc. A 471, 20150236 (2015)

    Article  MathSciNet  Google Scholar 

  8. Wang, M.M., Chen, Y.: Dynamic behaviors of mixed localized solutions for the three-component coupled Fokas–Lenells system. Nonlinear Dyn. 98, 1781–1794 (2019)

    Article  Google Scholar 

  9. Soto-Crespo, J.M., Devine, N., Hoffmann, N.P., Akhmediev, N.: Rogue waves of the Sasa–Satsuma equation in a chaotic wave field. Phys. Rev. E 90, 032902 (2014)

    Article  Google Scholar 

  10. Wang, M., Tian, B., Sun, Y., Zhang, Z.: Lump, mixed lump-stripe and rogue wave-stripe solutions of a (3+1)-dimensional nonlinear wave equation for a liquid with gas bubbles. Comput. Math. Appl. 79, 576–582 (2020)

    Article  MathSciNet  Google Scholar 

  11. Porsezian, K., Nakkeeran, K.: Optical solitons in presence of Kerr dispersion and self-frequency shift. Phys. Rev. Lett. 78, 3227 (1997)

    Article  Google Scholar 

  12. Akhmediev, N., Eleonskii, V.M., Kulagin, N.E.: Exact first-order solutions of the nonlinear Schrödinger equation. Theor. Math. Phys. 72, 809–818 (1987)

    Article  Google Scholar 

  13. Ma, Y.C.: The perturbed plane-wave solutions of the cubic Schrödinger equation. Stud. Appl. Math. 60, 43–59 (1979)

    Article  MathSciNet  Google Scholar 

  14. Feng, B.F.: Complex short pulse and coupled complex short pulse equations. Physica D 297, 15 (2015)

    Article  MathSciNet  Google Scholar 

  15. Wen, X.Y., Yan, Z.Y., Malomed, B.A.: Higher-order vector discrete rogue-wave states in the coupled Ablowitz–Ladik equations: exact solutions and stability. Chaos 26, 123110 (2016)

    Article  MathSciNet  Google Scholar 

  16. Wen, X.Y., Yan, Z.Y.: Modulational instability and dynamics of multi-rogue wave solutions for the discrete Ablowitz–Ladik equation. J. Math. Phys. 59, 073511 (2018)

    Article  MathSciNet  Google Scholar 

  17. Ohta, Y., Yang, J.K.: General rogue waves in the focusing and defocusing Ablowitz–Ladik equations. J. Phys. A: Math. Theor. 47, 255201 (2014)

    Article  MathSciNet  Google Scholar 

  18. Yang, J., Zhu, Z.N.: Higher-order rogue wave solutions to a spatial discrete Hirota equation. Chin. Phys. Lett. 35, 090201 (2018)

    Article  Google Scholar 

  19. Lakshmanan, M., Porsezian, K., Daniel, M.: Effect of discreteness on the continuum limit of the Heisenberg spin chain. Phys. Lett. A 133(9), 483–488 (1988)

    Article  Google Scholar 

  20. Daniel, M., Latha, M.M.: Soliton in discrete and continuum alpha helical proteins with higher-order excitations. Phys. A 240, 526–546 (1997)

    Article  Google Scholar 

  21. Daniel, M., Latha, M.M.: A generalized Davydov soliton model for energy transfer in alpha helical proteins. Phys. A 298, 351–370 (2001)

    Article  Google Scholar 

  22. Porsezian, K., Daniel, M., Lakshmanan, M.: On the integrability aspects of the one dimensional classical continuum isotropic biquadratic Heisenberg spin chain. J. Math. Phys. 33, 1807–1816 (1992)

    Article  MathSciNet  Google Scholar 

  23. Veni, S.S., Latha, M.M.: Nonlinear excitations in a disordered alpha-helical protein chain. Phys. A 407, 76–85 (2014)

    Article  MathSciNet  Google Scholar 

  24. Du, Z., Tian, B., Chai, H.P., Zhao, X.H.: Lax pair, Darboux transformation and rogue waves for the three-coupled fourth-order nonlinear Schrödinger system in an alpha helical protein. Wave Random Complex (2019). https://doi.org/10.1080/17455030.2019.1644466

    Article  Google Scholar 

  25. Kano, T.: Normal form of nonlinear Schrödinger equation. J. Phys. Soc. Jpn. 58, 4322–4328 (1989)

    Article  Google Scholar 

  26. Chowdury, A., Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Soliton solutions of an integrable nonlinear Schrödinger equation with quintic terms. Phys. Rev. E 90, 032922 (2014)

    Article  Google Scholar 

  27. Yang, Y.Q., Yan, Z.Y., Malomed, B.A.: Rogue waves, rational solitons, and modulational instability in an integrable fifth-order nonlinear Schrödinger equation. Chaos 25, 103112 (2015)

    Article  MathSciNet  Google Scholar 

  28. Chen, S.Y., Yan, Z.Y.: The higher-order nonlinear Schrödinger equation with non-zero boundary conditions: robust inverse scattering transform, breathers, and rogons. Phys. Lett. A 383, 125906 (2019)

    Article  MathSciNet  Google Scholar 

  29. Pickering, A., Zhao, H.Q., Zhu, Z.N.: On the continuum limit for a semidiscrete Hirota equation. Proc. Roy. Soc. A: Math., Phys. Eng. Sci. 472, 20160628 (2016)

    Article  MathSciNet  Google Scholar 

  30. Saravanakumar, T., Marshal Anthoni, S., Zhu, Q.X.: Resilient extended dissipative control for Markovian jump systems with partially known transition probabilities under actuator saturation. J. Frankl. I(357), 6197–6227 (2020)

    Article  MathSciNet  Google Scholar 

  31. Saravanakumar, T., Muoi, N.H., Zhu, Q.X.: Finite-time sampled-data control of switched stochastic model with non-deterministic actustor faults and saturation nonlinearity. J. Frankl. I(357), 13637–13665 (2020)

    Article  Google Scholar 

  32. Dudley, J.M., Genty, G., Dias, F., Kibler, B., Akhmediev, N.: Modulation instability, Akhmediev breathers and continuous wave supercontinuum generation. Opt. Express 17, 21497 (2009)

    Article  Google Scholar 

  33. Baronio, F., Conforti, M., Degasperis, A., Lombardo, S., Onorato, M., Wabnitz, S.: Vector rogue waves and baseband modulation instability in the defocusing regime. Phys. Rev. Lett. 113, 034101 (2014)

    Article  Google Scholar 

  34. Baronio, F., Chen, S.H., Grelu, P., Wabnitz, S., Conforti, M.: Baseband modulation instability as the origin of rogue waves. Phys. Rev. A 91, 033804 (2015)

    Article  Google Scholar 

  35. Wang, X., Wei, J., Wang, L., Zhang, J.L.: Baseband modulation instability, rogue waves and state transitions in a deformed Fokas–Lenells equation. Nonlinear Dyn. 97, 343–353 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work of has been supported by the National Natural Science Foundations of China (Grant Numbers 12001361 and 11701510).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Yuan Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Zhang, YL. & Ma, LY. Multi-rogue wave solutions for a generalized integrable discrete nonlinear Schrödinger equation with higher-order excitations. Nonlinear Dyn 105, 629–641 (2021). https://doi.org/10.1007/s11071-021-06578-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06578-x

Keywords

Navigation